Jump to main content
Jump to site search

Themed collection Small molecule activation, from biocatalysis to artificial catalysis

15 items
Viewpoint

Grand challenges in the nitrogen cycle

In this Viewpoint, we address limitations within our current understanding of the complex chemistry of the enzymes in the Nitrogen Cycle. Understanding of these chemical processes plays a key role in limiting anthropogenic effects on our environment.

Graphical abstract: Grand challenges in the nitrogen cycle
Viewpoint

Transition metal-mediated O–O bond formation and activation in chemistry and biology

O–O bond formation and activation reactions proceed via multi-step reactions in chemistry and biology and involve similar reactive intermediates like metal–oxo/oxyl, metal–superoxo, and/or metal–(hydro)peroxo species.

Graphical abstract: Transition metal-mediated O–O bond formation and activation in chemistry and biology
Review Article

Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis

Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.

Graphical abstract: Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis
Review Article

Biochemistry of aerobic biological methane oxidation

Methane monooxygenase enzymes use metal cofactors to activate methane under ambient, aerobic conditions. This review highlights recent progress in understanding the structure and activity of the membrane-bound and soluble methane monooxygenases.

Graphical abstract: Biochemistry of aerobic biological methane oxidation
Review Article

Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions

N2 is fixed as NH3 industrially by the Haber–Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes.

Graphical abstract: Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions
Review Article

Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide

The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).

Graphical abstract: Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide
Review Article

Molecular understanding of heteronuclear active sites in heme–copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling

Review surveying biomimetic modeling and molecular understanding of heteronuclear metalloenzyme active sites involved in dioxygen, nitric oxide, and sulfite reduction.

Graphical abstract: Molecular understanding of heteronuclear active sites in heme–copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling
Open Access Review Article

Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives

The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.

Graphical abstract: Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives
Review Article

Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction

This review summarizes the recent progress on MOFs and their derivatives used for OER electrocatalysis in terms of their morphology, composition and structure–performance relationship.

Graphical abstract: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction
Review Article

[FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models

[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.

Graphical abstract: [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models
Review Article

Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates

This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.

Graphical abstract: Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates
Review Article

Semiconductor nanocrystals for small molecule activation via artificial photosynthesis

The protocol of artificial photosynthesis using semiconductor nanocrystals shines light on green, facile and low-cost small molecule activation to produce solar fuels and value-added chemicals.

Graphical abstract: Semiconductor nanocrystals for small molecule activation via artificial photosynthesis
Open Access Review Article

Activation of O2 and NO in heme-copper oxidases – mechanistic insights from computational modelling

Recent computational studies elucidate the mechanisms in heme-copper oxidases for energy conservation and reduction of O2 and NO.

Graphical abstract: Activation of O2 and NO in heme-copper oxidases – mechanistic insights from computational modelling
Open Access Review Article

Where silylene–silicon centres matter in the activation of small molecules

Small molecules such as H2, N2, CO, NH3, O2 are ubiquitous stable species and their activation and role in the formation of value-added products are of fundamental importance in nature and industry.

Graphical abstract: Where silylene–silicon centres matter in the activation of small molecules
Tutorial Review

Molecular quaterpyridine-based metal complexes for small molecule activation: water splitting and CO2 reduction

This tutorial describes recent developments in the use of metal quaterpyridine complexes as electrocatalysts and photocatalysts for water splitting and CO2 reduction.

Graphical abstract: Molecular quaterpyridine-based metal complexes for small molecule activation: water splitting and CO2 reduction
15 items

About this collection

Small molecule activation is of fundamental significance in nature and in our life. Guest Edited by Rui Cao (Shaanxi Normal University), Nicolai Lehnert (University of Michigan), Wonwoo Nam (Ewha Womans University) and Kallol Ray (Humboldt-Universität zu Berlin), the topic of this themed collection is focused on small molecule activation reactions that are involved in many significant biological and artificial catalytic processes. The scope of this collection covers the catalytic and mechanistic aspects of various small molecule activation reactions, including enzymatic and biomimetic studies for new reactions, the development of new efficient catalytic systems, the characterization of new active intermediates, and new mechanistic insights into bond forming/breaking processes. Therefore, the following research areas are enclosed in this themed collection, catalysts and catalyst design principles and strategies, and applications of small molecule activations in energy conversion and chemical and pharmaceutical industry.

Spotlight

Advertisements