Themed collection Chemical compartmentalisation by membranes: from biological mechanism to biomimetic applications

15 items
Editorial

Chemical compartmentalisation by membranes: from biological mechanism to biomimetic applications

This issue presents a themed collection on investigating, harnessing and mimicking biological compartmentalisation using in vitro model systems, where biophysical mechanisms and biomembrane engineering are essential for realisation of the potential of membrane-bound compartments.

Graphical abstract: Chemical compartmentalisation by membranes: from biological mechanism to biomimetic applications
Open Access Perspective

Bioinspired nanoreactors for the biomineralisation of metallic-based nanoparticles for nanomedicine

A review of biological nanoreactor to make nanomedical metallic-based nanoparticles: from natural biomineralisation to biokleptic templating to synthetic vesicles.

Graphical abstract: Bioinspired nanoreactors for the biomineralisation of metallic-based nanoparticles for nanomedicine
Perspective

Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology

How membrane adhesion links to lipid and protein heterogeneities is not well-understood and is an understudied area ripe for development.

Graphical abstract: Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology
Open Access Perspective

Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments

Our understanding of the membrane sculpting capabilities of proteins from experimental model systems could be used to construct functional compartmentalised architectures for the engineering of synthetic cells.

Graphical abstract: Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments
Open Access Communication

Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors

Spatially segregated in vitro protein expression in a vesicle-based artificial cell, with different proteins synthesised in defined vesicle regions.

Graphical abstract: Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors
Open Access Paper

Mechanical and molecular basis for the symmetrical division of the fission yeast nuclear envelope

Experimental and theoretical evidence shows that symmetrical shapes of the fission yeast dividing nucleus originate from the SPB–chromosome attachments.

Graphical abstract: Mechanical and molecular basis for the symmetrical division of the fission yeast nuclear envelope
Open Access Paper

Direct measurement of DNA-mediated adhesion between lipid bilayers

Multivalent interactions between deformable mesoscopic units are ubiquitous in biology, where membrane macromolecules mediate the interactions between neighbouring living cells and between cells and solid substrates.

Graphical abstract: Direct measurement of DNA-mediated adhesion between lipid bilayers
Paper

Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides

Supramolecular amphipathicity exposes antimicrobial propensity of host defence peptides.

Graphical abstract: Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides
Paper

Specific adhesion of membranes simultaneously supports dual heterogeneities in lipids and proteins

Membrane adhesion mediated by one protein species simultaneously stabilizes both ordered-phase and disordered-phase heterogeneities, distinct from the non-adhered membrane.

Graphical abstract: Specific adhesion of membranes simultaneously supports dual heterogeneities in lipids and proteins
Paper

Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects

Reconstitution experiments on Giant Unilamellar Vesicles and Molecular Dynamics Simulations indicate that alpha-synuclein binds to neutral flat membranes in the presence of methyl-branched lipids.

Graphical abstract: Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects
Open Access Paper

Release of proteins and enzymes from vesicular compartments by alternating magnetic fields

The self-assembly of avidin, biotinylated vesicles and biotinylated (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles gave a nanomaterial able to magnetically release catalytically active enzymes from vesicular compartments.

Graphical abstract: Release of proteins and enzymes from vesicular compartments by alternating magnetic fields
Open Access Paper

Selective ion-permeable membranes by insertion of biopores into polymersomes

Biomimetic polymersomes with an ion-selective membrane were successfully engineered by insertion of ionomycin, without affecting their final architecture.

Graphical abstract: Selective ion-permeable membranes by insertion of biopores into polymersomes
Paper

Inside-outside self-assembly of light-activated fast-release liposomes

Schematic and TEM image of thermosensitive liposomes with NIR-absorbing nanoparticles.

Graphical abstract: Inside-outside self-assembly of light-activated fast-release liposomes
Paper

Biophysics of α-synuclein induced membrane remodelling

α-Synuclein leads to thinning, and subsequent tubulation of membrane bilayer.

Graphical abstract: Biophysics of α-synuclein induced membrane remodelling
Paper

Native silica nanoparticles are powerful membrane disruptors

Silica nanoparticles permeabilize liposomal membranes as a function of nanoparticle size, surface chemistry and biocoating as well as membrane charge.

Graphical abstract: Native silica nanoparticles are powerful membrane disruptors
15 items

About this collection

Biology maintains its complex network of biochemical interactions and reactions by spatially localising these processes into distinct compartments. These compartments are usually confined by highly dynamic and functional membranes, which regulate material transport processes within the cell. Physical scientists have developed methods to reconstitute in vitro models of these functional interfaces and compartments, whether they may be membranes composed of natural lipids, or biomimetic self-assembled membranes constructed from block copolymers or polyelectrolytes. This themed issue is devoted to research into understanding, mimicking and harnessing the compartmentalisation of biology using in vitro model systems.

The Guest Editors for this themed collection are Barbara Ciani (University of Sheffield, UK) and Paul Beales (University of Leeds, UK).

Spotlight

Advertisements