Issue 46, 2014

Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction

Abstract

Cationic gemini surfactants have strong potential as compaction agents of nucleic acids for efficient non-viral gene delivery. In this work, we present the aggregation behavior of three novel cationic serine-based gemini surfactants as well as their ability to compact DNA per se and mixed with a helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). All the surfactants have a 12-12-12 configuration, i.e. two main 12-carbon alkyl chains linked to the nitrogen atom of the amino acid residue and a 12 methylene spacer, but they differ in the nature of the spacer linkage: for (12Ser)2N12, an amine bond; for (12Ser)2CON12, an amide bond; and for (12Ser)2COO12, an ester bond. Interestingly, while the amine-based gemini aggregates into micelles, the amide and ester ones spontaneously form vesicles, which denotes a strong influence of the type of linkage on the surfactant packing parameter. The size, ζ-potential and stability of the vesicles have been characterized by light microscopy, cryogenic scanning electron microscopy (cryo-SEM) and dynamic light scattering (DLS). The interaction of the gemini aggregates with DNA at different charge ratios and in the absence and presence of DOPE has been studied by DLS, fluorescence spectroscopy and cryo-SEM. All the compounds are found to efficiently compact DNA (complexation > 90%), but relevant differences are obtained in terms of the size, ζ-potential and stability of the lipoplexes formed. Results are rationalized in terms of headgroup differences and the type of aggregates present prior to DNA condensation.

Graphical abstract: Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2014
Accepted
23 Sep 2014
First published
23 Sep 2014

Soft Matter, 2014,10, 9352-9361

Author version available

Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction

S. G. Silva, I. S. Oliveira, M. L. C. do Vale and E. F. Marques, Soft Matter, 2014, 10, 9352 DOI: 10.1039/C4SM01771D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements