Issue 14, 2016

Micelle-templated synthesis of Pt hollow nanospheres for catalytic hydrogen evolution

Abstract

As an alternative to galvanic replacement reactions and hard-template strategies, we report an efficient, mild and simple synthesis strategy for fabrication of colloidal platinum (Pt) hollow nanospheres. An aqueous asymmetric triblock copolymer poly(styrene-b-vinyl-2-pyridine-b-ethylene oxide) [PS(20.1k)–PVP(14.2k)–PEO(26.0)] micelle with core–shell–corona architecture has been found to be an efficient soft scaffold for the synthesis of Pt hollow nanospheres using K2PtCl6 as a metal precursor and NaBH4 as a reducing agent. In the core–shell–corona type micelles, the core serves as a template for void volume creation, the shell domain acts reaction site for inorganic precursors, and the corona stabilizes the composite particles. The polymer/Pt composite particles were solvent-extracted by refluxing with dimethyl formamide (DMF) at 160 °C to remove polymeric materials and obtain hollow particles. Investigation of precursor concentrations suggested that the wall-structures become irregular and uneven as the molar ratio of PVP/Pt(IV) increases from 1 : 12 to 1 : 25, whereas the use of polymers with large PS block length [PS(45k)–PVP(16k)–PEO(8.5)] results in the formation of spherical particles with slightly increased hollow void-space diameters. The polymeric micelles and Pt hollow nanospheres were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infra-red (FT IR), thermal (TG/DTA) and nitrogen sorption analyses. The catalytic activity of the Pt hollow nanospheres was investigated for hydrogen liberation from ammonia–borane (AB) by hydrolysis reaction at room temperature. The catalytic activity of the Pt hollow nanospheres reveals that they can serve as a promising heterogeneous catalyst towards hydrogen generation system using AB as solid hydrogen storage materials.

Graphical abstract: Micelle-templated synthesis of Pt hollow nanospheres for catalytic hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
09 déc. 2015
Accepted
07 janv. 2016
First published
11 janv. 2016

RSC Adv., 2016,6, 11370-11377

Micelle-templated synthesis of Pt hollow nanospheres for catalytic hydrogen evolution

M. Sasidharan, P. Bhanja, C. Senthil and A. Bhaumik, RSC Adv., 2016, 6, 11370 DOI: 10.1039/C5RA26277A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements