Mechanistic insights into the amidolysis of a phosphate triester: the antagonistic role of water†
Abstract
The breakdown of O,O-diethyl-2,4-dinitrophenyl phosphate in formamide (FMD) solutions is assessed using kinetic studies and 31P nuclear magnetic resonance (NMR) analysis. Regiospecific nucleophilic amidolysis via P–O bond cleavage is observed, leading to non-toxic diester and FMD regeneration. In the systems evaluated, water plays an antagonistic role: while it is key for the breakdown of the reaction intermediate, it inhibits the nucleophilic activity of FMD by hydrogen bonding effects.
- This article is part of the themed collection: Mechanistic, computational & physical organic chemistry in OBC