Isovalent electronic systems B +13 and BeB12: structural interchange of GM and TS†
Abstract
Fluxional Wankel motor molecules have received considerable attention in recent years in both chemistry and nanoscience. Based on extensive first-principles theory calculations, we present herein the smallest neutral quasi-planar alkaline-earth metal-doped Wankel motor complex Cs BeB12 (BeB2@B10), which is isovalent with C2v B+13 (B3@B10+). The global minimum (GM) Cs BeB12 (1) and transition state (TS) Cs BeB12 (2) correspond to the C2v TS (4) and C2v GM (3) of B+13, respectively. Molecular dynamics simulations show that, with ten equivalent GMs and ten equivalent TSs intervals, the B10 outer ring in BeB12 (1/2) overcomes the rotational energy barrier to rotate almost freely around the BeB2 triangular core above 800 K in a rotation angle of 36° in each step. Detailed bonding analyses indicate that, in addition to the ten localized periphery B–B bonds, both Cs BeB12 (1) and Cs BeB12 (2) possess three delocalized bonding systems over the molecular framework satisfying the (4n+2) Hückel rule, making the neutral complex 2σ + π triply aromatic in nature and highly stable in thermodynamics.