Computational screening of high activity and selectivity of CO2 reduction via transition metal single-atom catalysts on triazine-based graphite carbon nitride†
Abstract
Single-atom catalysts (SACs) are emerging as promising catalysts in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Herein, a series of 3d to 5d transition metal atoms supported on triazine-based graphite carbon nitride (TM@TGCN) as a CO2 reduction catalyst are studied via density functional theory computations. Eventually, four TM@TGCN catalysts (TM = Ni, Rh, Os, and Ir) are selected using a five-step screening method, in which Rh@TGCN and Ni@TGCN show a low limiting potential of −0.48 and −0.58 V, respectively, for reducing CO2 to CH4. The activity mechanism shows that the catalysts with a negative d-band center and optimal positive charge can improve the CO2RR performance. Our study provides theoretical guidance for the rational design of highly active and selective catalysts.

Please wait while we load your content...