Issue 37, 2020

N-Derivatives of Shannon entropy density as response functions

Abstract

The exact first and second order partial derivatives of Shannon entropy density with respect to the number of electrons at constant external potential are introduced as new descriptors for prediction of the active sites of a molecule. The derivatives, which are a measure of the inhomogeneity of electron density, are calculated both exactly (from analytical forms) and approximately (using the finite difference method) for some molecular systems. According to the maximum entropy principle, the extreme value of the first order derivative on the surface of a given molecule should determine the active sites of the molecule in electrophilic and nucleophilic attack. The second order derivative indicates where the Shannon entropy is more concentrated or depleted during the electron exchange. Although these derivatives on the surfaces of helium and neon atoms are uniform, the corresponding values for argon, krypton and xenon atoms are not. This could explain the greater tendency of heavy noble gas atoms to form stable compounds. A dual descriptor is also defined as the difference between the left and right first order derivatives of Shannon entropy density, which allows one to simultaneously predict the preferable sites for electrophilic and nucleophilic attack over the system at point r. Therefore, the reactivity of an atom in a molecule requires the non-uniformity of the first and second order derivatives of Shannon entropy density on the surface of that atom.

Graphical abstract: N-Derivatives of Shannon entropy density as response functions

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2020
Accepted
01 Sep 2020
First published
05 Sep 2020

Phys. Chem. Chem. Phys., 2020,22, 21535-21542

N-Derivatives of Shannon entropy density as response functions

A. Matrodi and S. Noorizadeh, Phys. Chem. Chem. Phys., 2020, 22, 21535 DOI: 10.1039/D0CP03808C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements