Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 50, 2018
Previous Article Next Article

Layer charge robust delamination of organo-clays

Author affiliations

Abstract

To date delamination of organo-clays is restricted to highly charged, vermiculite-type layered silicates (e.g. n-butylammonium vermiculites) while – counterintuitively – low charged, smectite-type layered silicates do not delaminate although their Coulomb interactions are much weaker. Guided by previous findings, we now identified organo-cations that allowed for extending the delamination of organo clays to charge densities in the regime of low charged smectites as well. Upon intercalation of protonated amino-sugars like N-methyl-D-glucamine (meglumine) robust delamination of 2 : 1 layered silicates via repulsive osmotic swelling in water is achieved. This process is stable over a wide range of charge densities spanning from smectites (layer charge x ∼ 0.3 charges per formula unit Si4O10F2, p.f.u.) to vermiculites (x ∼ 0.7 p.f.u.). It is evidenced that a combination of first, a sufficiently large charge equivalent area (bulkiness) of meglumine with second, a significant hydrophilicity of meglumine leads to swelling above a threshold d-spacing of ≳17.5 Å in moist air (98% r.h.). Hereby, electrostatic attraction is critically weakened, causing the onset of repulsive osmotic swelling which leads to utter delamination. Moreover, meglumine renders delamination tolerant to charge heterogeneities typically found in natural and synthetic clays.

Graphical abstract: Layer charge robust delamination of organo-clays

Back to tab navigation

Supplementary files

Article information


Submitted
21 Jun 2018
Accepted
04 Aug 2018
First published
13 Aug 2018

This article is Open Access

RSC Adv., 2018,8, 28797-28803
Article type
Paper

Layer charge robust delamination of organo-clays

M. Daab, N. J. Eichstaedt, A. Edenharter, S. Rosenfeldt and J. Breu, RSC Adv., 2018, 8, 28797
DOI: 10.1039/C8RA05318A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements