Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 35, 2017
Previous Article Next Article

Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery

Author affiliations


Relative to advanced cathode materials, anode materials have become one of the key factors to hamper the performance improvement of lithium-ion batteries (LIBs). Recently, two-dimensional (2D) transition metal carbides (e.g. MXenes) have drawn great attention due to their high Li storage ability. However, metal-rich 2D transition metal carbides as anodes usually need surface functionalization, leading to a decrease in the rate performances. Here, we propose that increasing the carbon composition in 2D TaxCy is beneficial for not only eliminating surface functionalization but also greatly improving battery performance. First-principles swarm structural searches were used to explore structures and stabilities of 2D TaxCy (x = 1 and y = 1–4, or x = 2 and y = 1). Besides reproducing the reported 2D TaC, TaC2 and Ta2C are found to be stable, and have high thermal stabilities. Metallic TaC2 and Ta2C provide good electronic conductivity. Intriguingly, carbon-rich TaC2 contains carbon dimers exposed on the surface, enabling it to directly adsorb Li atoms. After adsorption of two-layer Li atoms, its structural integrity is well preserved. The resultant specific capacity, diffusion energy barrier, and open-circuit-voltage (OCV) of TaC2 are much better than those of commercial graphite, f-Ti3C2 or the Ti2C monolayer. Compared with TaC2, TaC, and Ta2C as anode materials, the overall performance of carbon-rich TaxCy is better. Our work provides a useful strategy for designing new-type 2D transition metal materials for LIBs.

Graphical abstract: Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 May 2017, accepted on 09 Aug 2017 and first published on 09 Aug 2017

Article type: Paper
DOI: 10.1039/C7TA04390B
Citation: J. Mater. Chem. A, 2017,5, 18698-18706

  •   Request permissions

    Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery

    T. Yu, S. Zhang, F. Li, Z. Zhao, L. Liu, H. Xu and G. Yang, J. Mater. Chem. A, 2017, 5, 18698
    DOI: 10.1039/C7TA04390B

Search articles by author