One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering†
Abstract
A simple, fast, reproducible and efficient one-step fabrication method was successfully developed to prepare gold nanoparticle/carbon nanosheet (Au NP/CNS) hybrids by using sonoelectrochemistry. This method involved simultaneous generation of carbon nanosheets (CNSs) by oxidation of a graphite anode and generation of Au NPs by reduction of AuCl4− on the surface of the cathode. Then the Au NPs modified with poly(diallyl dimethyl ammonium chloride) were self-assembled on the surface of the CNS. A homemade sonoelectrochemical device that provided both high-intensity electric and ultrasonic fields was applied. The ability to obtain Au NPs with a controlled size and distribution on the surface of the CNS benefitted from the synergistic effect of the electric field and ultrasonic field. The Au NPs on the CNS surface exhibited distinctive and high-quality SERS activity. The enhancement factor of the developed substrate was 1.2 × 106 using 4-aminothiophenol as the probe molecule. The Au NP/CNS hybrid showed a great increase of Raman signals for aromatic molecules because of the high affinity of the CNS for aromatic molecules and the SERS activity of Au NPs. This SERS substrate also showed charge selectivity for cationic aromatic dyes, due to the negative charge on the surface of the CNS. Subsequently, the potential practical application of the SERS substrate was evaluated by quantitative analysis of adenine. The results suggest that Au NP/CNS materials as sensitive SERS-active substrates have great potential for detection of biomolecules.