Issue 6, 2015

Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy

Abstract

Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications.

Graphical abstract: Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
09 Nov 2014
Accepted
23 Dec 2014
First published
26 Dec 2014

Nanoscale, 2015,7, 2667-2675

Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy

G. Huang, X. Zhu, H. Li, L. Wang, X. Chi, J. Chen, X. Wang, Z. Chen and J. Gao, Nanoscale, 2015, 7, 2667 DOI: 10.1039/C4NR06616B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements