Issue 48, 2014

Metal effects on ligand non-innocence in Group 5 complexes of the redox-active [ONO] pincer ligand

Abstract

Isostructural vanadium, niobium and tantalum complexes of bis(3,5-di-tert-butyl-2-phenol)amine ([ONO]H3), were prepared and characterized to evaluate the impact of the metal ion on redox-activity of the ligand platform. New vanadium and niobium complexes with the general formula, [ONO]MCl2L (M = V, L = THF, 1-V; M = Nb, L = Et2O, 1-Nb) were prepared and structurally analysed by X-ray crystallography. The solid-state structures indicate that the niobium derivative is electronically analogous to the tantalum analog 1-Ta, containing a reduced (ONO) ligand and a niobium(V) metal ion, [ONOcat]NbVCl2(OEt2); whereas, the vanadium derivative is best described as a vanadium(IV) complex, [ONOsq]VIVCl2(THF). One-electron oxidation was carried out on all three metal complexes to afford [ONO]MCl3 derivatives (3-V, 3-Nb, 3-Ta). For all three derivatives, oxidation occurs at the (ONO) ligand. In the cases of niobium and tantalum, electronically similar complexes characterized as [ONOsq]MVCl3 were obtained and for vanadium, ligand-based oxidation led to the formation of a complex best described as [ONOq]VIVCl3. All complexes were characterized by spectroscopic and electrochemical methods. DFT and TD-DFT calculations were used to probe the electronic structure of the complexes and help verify the different electronic structures stemming from changes to the coordinated metal ion.

Graphical abstract: Metal effects on ligand non-innocence in Group 5 complexes of the redox-active [ONO] pincer ligand

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2014
Accepted
13 Oct 2014
First published
29 Oct 2014

Dalton Trans., 2014,43, 17991-18000

Metal effects on ligand non-innocence in Group 5 complexes of the redox-active [ONO] pincer ligand

S. Hananouchi, B. T. Krull, J. W. Ziller, F. Furche and A. F. Heyduk, Dalton Trans., 2014, 43, 17991 DOI: 10.1039/C4DT02259A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements