High-nuclearity Cu14 ionic complex featuring 1,3-bis(diphenylphosphino)propane and methylsilsesquioxane ligands: highly efficient catalysis of mild peroxidative alkane fuctionalizations

Ivan S. Arteev abc, Victor N. Khrustalev bc, Lidia S. Shul’pina a, Alexey N. Rodionov a, Elena S. Shubina a, Karim Ragimov d, Zhi Wang e and Alexey N. Bilyachenko *a
aA.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov St. 28, 119991 Moscow, Russian Federation. E-mail: bilyachenko@ineos.ac.ru
bPeoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russian Federation
cZelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
dBaku State University, Z. Xalilov Str. 23, Az 1148 Bak, Azerbaijan
eKey Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China

Received 11th October 2025 , Accepted 13th November 2025

First published on 14th November 2025


Abstract

The first metallacomplex containing both 1,3-bis(diphenylphosphino)propane and silsesquoxane ligands is presented, which adopts an intriguing three-component ionic structure. According to X-ray diffraction studies, the central dianionic CuII12-methylsilsesquioxane cage is balanced by two external cationic [CuI(dppp)2] species, giving a total Cu14 nuclearity. The cage component of the complex encapsulates hydroxyl, carbonate, and chloride species. The complex was evaluated as a catalyst for the effective oxidation of alkanes to alkyl hydroperoxides and of alcohols to ketones using peroxides.


Cage-like metallasilsesquioxanes (CLMSs) are a fast-growing family of hybrid metallacomplexes with an inorganic (metal oxo) inner core surrounded by an organic periphery.1 Unique structural diversity of CLMSs endows them with an impressively wide scope of important applications, some of which include the investigation of flame-retardant,2 antifungal,3 photoswitching properties,4 and the development of ceramic,5 semiconductive,6 or stereoregular silsesquioxane7 materials. CLMSs offer wide opportunities for the preparation of various (1D–3D) coordination polymers8 as well as for investigating magnetic exchange interactions,9 including examples of complex spin glass10 and SMM behaviors.11 Recent results have discovered the rich photophysics of lanthanide-based CLMSs,12 featuring energy transfer,13 remote temperature sensing,14 and thin-film optoelectronic effects.15 While rare divalent lanthanide-based CLMSs are capable of activating small molecules,16 numerous research teams have successfully explored the catalytic properties of CLMSs based on transition and main group metal ions.17 These reports include their activity in the synthesis of quinazolinones18 and bio-inspired ethers,19 Chan–Lam couplings,20 tandem deacetalization/deketalization–Knoevenagel condensation reactions,21 transformations of volatile organic compounds.22 Considering (i) the kaleidoscopic variety of cage coppersilsesquioxanes containing auxiliary organic ligands23 and (ii) the strong individuality of methylsilsesquioxane-surrounded copper complexes,20,24 we were interested in the progress of both synthetic and catalytic directions. For the synthesis method, a convenient “siloxanolate approach” was chosen (Scheme S1). First, this method implies the in situ formation of active sodium siloxanolate [PhSi(O)ONa]n species via the alkaline (NaOH) hydrolysis of PhSi(OMe)3.25 Later on, these species interact with CuCl2, and the in situ-prepared {[MeSiO2]x[Cu]y} species are treated with bidentate ligand 1,3-bis(diphenylphosphino)propane (dppp). Despite numerous examples of P,P-ligand-based metallacomplexes, to the best of our knowledge, dppp-assisted CLMSs have remained unknown. As a result of the before-mentioned three-step reaction, an intriguing compound [(Me4Si4O8)2(Me2Si2O5)4(Cu)12(Cl)0.9(OH)0.9(CO3)0.1][(Ph2P(CH2)3PPh2)2(Cu)]2·2CHCl3·(nCHCl3)sq1 was isolated in 65% yield. According to X-ray diffraction investigations (Fig. 1 top and Fig. S3), the complex includes three charged components. Specifically, the central Cu12-methylsilsesquioxane cage plays the role of a dianion due to the encapsulation of three species (hydroxyl, carbonate, and chloride). The appearance of carbonate could not be explained by the formal logic of synthesis and could only be due to the spontaneous fixation of CO2 (from the air) during the self-assembly of 1. This is in accord with several “carbonate CLMS syntheses” that have been reported earlier.6,10 The cage contains four Cu⋯Cu⋯Cu trimers (Fig. 1 bottom left) coordinated by six silsesquioxane ligands (Fig. 1 bottom right and Fig. S4), namely, (i) two Si4-based cycles in axial positions and (ii) four Si2-based acyclic fragments in the central belt of the complex. Capping cyclic ligands in a sandwich manner coordinate four copper centers each, while bridging acyclic ligands coordinate two copper trimers each. According to this, eight out of twelve copper ions are coordinated by ligands of both types. Next, cationic balancers of the dianionic cage in 1 are represented by two external species of Cu(dppp)2 composition (Fig. 1 top and Fig. S5).
image file: d5cc05805h-f1.tif
Fig. 1 Top. Molecular structure of {[CuI(dppp)2]2}2+{[(Me4Si4O8)2(Me2Si2O5)4CuII12(Cl)(HO)]}2−1. Bottom left. Copper oxo core of Cu12-cage fragment of 1. Bottom right. Six silsesquioxane ligands of 1. Colour code: Cu, green; Si, yellow; P, orange; O, red; C, grey.

Complex 1 has been tested as a precatalyst in the oxidation reactions of organics. It is known that the use of peroxides favours these oxidations,26 while copper complexes provide high catalytic activity and selectivity.27 First, we found that complex 1 exhibits high catalytic activity in the oxidation of saturated hydrocarbons. Oxidation of cyclohexane with hydrogen peroxide results in the formation of a mixture of cyclohexanol and cyclohexanone (Fig. 2). Notably, cyclohexanone/cyclohexanol ratio after 60 min is about 0.9 (0.042 M/0.047 M, Fig. 2(A)). At the same time, an addition of triphenylphosphine to the reaction mixture (the Shul’pin method)28 leads to a sharp increase in the concentration of cyclohexanol, with the cyclohexanone/cyclohexanol ratio dropping to 0.05 (Fig. 2(B); see SI for details). The total yield of alcohol and ketone (after 2 h) reached 23% (TON = 220). This reaction is effective in the presence of the cocatalyst HNO3. Specifically, the reaction in the absence of nitric acid leads to the decomposition of hydrogen peroxide (strong catalase activity), with a low yield (10%) of cyclohexanol obtained after 120 min.


image file: d5cc05805h-f2.tif
Fig. 2 Accumulation of cyclohexanol and cyclohexanone in the oxidation of cyclohexane (0.46 M) with hydrogen peroxide (2.0 M, 50% aqueous) catalyzed by compound 1 (5 × 10−4 M) in the presence of HNO3 (0.02 M) in MeCN at 40 °C. Concentrations of cyclohexanone and cyclohexanol were determined before reduction of the solid PPh3 (graph A). The same reaction after reduction of the aliquots with solid PPh3 (Graph B).

The dependences of the initial rates of cyclohexane oxidation with hydrogen peroxide on the initial concentrations of cyclohexane, catalyst, H2O2 and HNO3 are presented in Fig. S7–S10, respectively. To assess the reactivity of a species arising from the decomposition of hydrogen peroxide under the action of 1 and inducing alkane oxidation, the influence of the alkane concentration on the initial rate of its oxidation was studied (see Fig. S7). These data, as well as the character of the dependence of the initial rate of cyclohexane oxidation on the initial concentration of the hydrocarbon (reaching a plateau at [cyclohexane]0 >0.4 M) (Fig. S7), indicate that the reaction proceeds with the participation of hydroxyl radicals and alkyl hydroperoxide is formed as the main product.

We also investigated the oxidation of n-heptane with hydrogen peroxide catalyzed by 1 (initial concentrations: n-heptane 0.5 M, H2O2 2.0 M, catalyst 5 × 10−4 M, HNO3 0.02 M, CH3CN up to 2.5 ml). After two hours of the reaction and the reduction with triphenylphosphine, the following concentrations of alcohol isomers were obtained: C (1) 0.012 M; C (2) 0.032 M; C (3) 0.033 M; C (4) 0.018 M. These values give a series of selectivity: C (1)[thin space (1/6-em)]:[thin space (1/6-em)]C (2)[thin space (1/6-em)]:[thin space (1/6-em)]C (3)[thin space (1/6-em)]:[thin space (1/6-em)]C (4) = 1.0[thin space (1/6-em)]:[thin space (1/6-em)]4.0[thin space (1/6-em)]:[thin space (1/6-em)]4.1[thin space (1/6-em)]:[thin space (1/6-em)]4.5. The selectivity parameters measured in the oxidation of alkanes are close to the parameters typical for the reactions of alkanes with hydroxyl radicals. However, the selectivity parameters obtained for n-heptane are slightly higher than the typical selectivity parameters for the oxidation of n-heptane with the participation of hydroxyl radicals. This can be explained by the steric hindrance created by the ligands around the catalytic reaction center.

In contrast to alkanes, aliphatic and aromatic alcohols are oxidized with hydrogen peroxide with very low efficiency. However, use of tert-butyl hydroperoxide in these oxidations provided corresponding ketones in high yields (acetophenone – 80%, cyclohexanone – 46%, 2-heptanone – 56%, Fig. 3). It should be noted that these reactions do not require the addition of nitric acid.


image file: d5cc05805h-f3.tif
Fig. 3 Accumulation of acetophenone in the oxidation of 1-phenylethanol (0.5 M) (curve 1, blue dots), cyclohexanone in the oxidation of cyclohexanol (0.5 M) (curve 2, red dots), and 2-heptanone in the oxidation of 2-heptanol (0.5 M) (curve 3, green dots), with tert-butyl hydroperoxide (1.5 M, 70% aqueous), catalyzed by complex 1 (5 × 10−4 M) at 50 °C in acetonitrile. In order to quench the oxidation process, concentrations of products were measured by GC after the reduction of the reaction samples with solid PPh3.

In summary, we demonstrated for the first time the ability of the dppp ligand to induce a deep rearrangement of the copper–methylsilsesquioxane structure, leading to an unusual three-piece ionic Cu14-complex. This type of compound joins a family of the highest nuclearity Cu(II)-CLMSs, Cu16-dimeric sandwich29 and Cu13 “Tower of Pisa”-like30 compounds. Observation of the intriguing Cu12–methylsilsesquioxane cage with two external cationic [Cu(dppp)2] species highlights the rich opportunities of this mixed-ligand approach in metallasilsesquioxane synthetic chemistry. Compound 1 is a powerful catalyst for the efficient oxidation of alkanes and alcohols with peroxides. Compound 1's activity, which is known for the polynuclear complexes,31 is much higher than that of simpler copper salts and complexes.32 Oxidations with H2O2 are more effective in the presence of HNO3 additive, which suppresses catalase-like activity of the complex. Oxidation of alcohols to ketones did not require an acid cocatalyst and, most probably, also proceeded via the formation of hydroxyl radicals.33 Further studies of catalytically active metallasilsesquioxanes are now ongoing in our groups and will be reported elsewhere.

We are grateful for the financial support from the Russian Science Foundation (RSF grant 22-13-00250, synthesis and catalytic studies). This work (elemental analysis) was in part supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 075-03-2023-642) and was performed using equipment at the Center for Molecular Composition Studies of INEOS RAS.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data supporting this article have been included as part of the supplementary information (SI). Supplementary iInformation: synthesis, structure, X-ray diffraction studies, catalysis See DOI: https://doi.org/10.1039/d5cc05805h.

CCDC 2494574 contains the supplementary crystallographic data for this paper.34

Notes and references

  1. (a) M. M. Levitsky and A. N. Bilyachenko, Coord. Chem. Rev., 2016, 306, 235 CrossRef CAS; (b) M. M. Levitsky, Y. V. Zubavichus, A. A. Korlyukov, V. N. Khrustalev, E. S. Shubina and A. N. Bilyachenko, J. Cluster Sci., 2019, 30, 1283 CrossRef CAS and references cited therein.
  2. (a) S. Marchesi, C. Bisio, F. Carniato and E. Boccaleri, Inorganics, 2023, 11, 426 CrossRef CAS; (b) L. Qiao, W. Zhang and R. Yang, Eur. Polym. J., 2024, 211, 113027 CrossRef CAS.
  3. A. N. Bilyachenko, E. I. Gutsul, V. N. Khrustalev, O. Chusova, P. V. Dorovatovskii, V. A. Aliyeva, A. B. Paninho, A. V. M. Nunes, K. T. Mahmudov, E. S. Shubina and A. J. L. Pombeiro, Inorg. Chem., 2023, 62, 15537 CrossRef CAS PubMed.
  4. K. Sheng, Y.-N. Liu, R. K. Gupta, M. Kurmoo and D. Sun, Sci. China: Chem., 2021, 64, 419 CrossRef CAS.
  5. M. I. Buzin, I. O. Volkov, E. S. Trankina, A. A. Korlyukov and V. S. Papkov, INEOS Open, 2024, 7, 15 CrossRef CAS.
  6. K. Sheng, R. Wang, X. Tang, M. Jagodič, Z. Jagličić, L. Pang, J.-M. Dou, Z.-Y. Gao, H.-Y. Feng, C.-H. Tung and D. Sun, Inorg. Chem., 2021, 60, 14866 CrossRef CAS.
  7. V. Frank, A. R. Shakirova, A. S. Peregudov, F. M. Dolgushin, O. I. Shchegolikhina and A. A. Anisimov, New J. Chem., 2025, 49, 11273 RSC.
  8. (a) A. Y. Zueva, A. N. Bilyachenko, V. N. Khrustalev, L. S. Shul'pina, N. S. Ikonnikov, P. V. Dorovatovskii, E. S. Shubina, K. G. Rahimov, N. N. Lobanov and D. Sun, Nanoscale, 2024, 16, 18389 RSC; (b) A. N. Bilyachenko, A. N. Kulakova, L. S. Shul'pina, M. M. Levitsky, A. A. Korlyukov, V. N. Khrustalev, Y. V. Zubavichus, P. V. Dorovatovskii, U. S. Tsareva, E. S. Shubina, A. A. Petrov, N. V. Vorontsov and G. B. Shul’pin, J. Organomet. Chem., 2018, 867, 133 CrossRef CAS; (c) H. Chun and D. Moon, J. Am. Chem. Soc., 2023, 145, 18598 CrossRef CAS PubMed.
  9. (a) M. M. Levitsky, A. N. Bilyachenko, E. S. Shubina, J. Long, Y. Guari and J. Larionova, Coord. Chem. Rev., 2019, 398, 213015 CrossRef CAS; (b) M. Tricoire, N. Jori, F. F. Tirani, R. Scopelliti, I. Zivković, L. S. Natrajan and M. Mazzanti, Chem. Commun., 2024, 60, 55 RSC; (c) A. N. Bilyachenko, E. I. Gutsul, V. N. Khrustalev, P. V. Dorovatovskii, E. S. Shubina, Y. Guari, G. Félix, J. Larionova, A. G. Mahmoud and A. J. L. Pombeiro, Cryst. Growth Des., 2023, 23(12), 8707 CrossRef CAS.
  10. (a) A. N. Kulakova, A. N. Bilyachenko, A. A. Korlyukov, M. M. Levitsky, J. Long, Y. Guari and J. Larionova, J. Organomet. Chem., 2021, 942, 121815 CrossRef CAS; (b) A. N. Bilyachenko, A. Yalymov, M. Dronova, A. A. Korlyukov, A. V. Vologzhanina, M. A. Es’kova, J. Long, J. Larionova, Y. Guari, P. V. Dorovatovskii, E. S. Shubina and M. M. Levitsky, Inorg. Chem., 2017, 56, 12751 CrossRef CAS PubMed.
  11. (a) Y.-N. Liu, J.-L. Hou, Z. Wang, R. K. Gupta, Z. Jagličić, M. Jagodič, W.-G. Wang, C.-H. Tung and D. Sun, Inorg. Chem., 2020, 59, 5683 CrossRef CAS PubMed; (b) G. Félix, S. Sene, A. N. Kulakova, A. N. Bilyachenko, V. N. Khrustalev, E. S. Shubina, Y. Guari and J. Larionova, RSC Adv., 2023, 13, 26302 RSC.
  12. A. N. Kulakova, A. N. Bilyachenko, M. M. Levitsky, V. N. Khrustalev, E. S. Shubina, G. Felix, E. Mamontova, J. Long, Y. Guari and J. Larionova, Chem. – Eur. J., 2020, 26, 16594 CrossRef CAS PubMed.
  13. S. Marchesi, C. Bisio and F. Carniato, Processes, 2022, 10, 758 CrossRef CAS.
  14. G. Félix, A. N. Kulakova, S. Sene, V. N. Khrustalev, M. A. Hernández-Rodríguez, E. S. Shubina, T. Pelluau, L. D. Carlos, Y. Guari, A. N. Carneiro Neto, A. N. Bilyachenko and J. Larionova, Front. Chem., 2024, 12, 1379587 CrossRef.
  15. K. Sheng, W.-D. Si, R. Wang, W.-Z. Wang, J. Dou, Z.-Y. Gao, L.-K. Wang, C.-H. Tung and D. Sun, Chem. Mater., 2022, 34, 4186 CrossRef CAS.
  16. A. R. Willauer, A. M. Dabrowska, R. Scopelliti and M. Mazzanti, Chem. Commun., 2020, 56, 8936 RSC.
  17. (a) C. Calabrese, C. Aprile, F. Giacalone and M. Gruttadauria, Catal. Sci. Technol., 2020, 10, 7415 RSC; (b) A. N. Bilyachenko, N. Reis Conceição, M. F. C. Guedes da Silva, K. T. Mahmudov, G. B. Shul'pin and A. J. L. Pombeiro, Synthesis, Structure and Catalytic Application of Cage Metallasilsesquioxanes in Synthesis and Applications in Chemistry and Materials, World Scientific, 2024, p. 245 Search PubMed.
  18. Q. Shen, K. Sheng, Z.-Y. Gao, A. N. Bilyachenko, X.-Q. Huang, M. Azam, C.-H. Tung and D. Sun, Inorg. Chem., 2024, 63, 13022 CrossRef CAS.
  19. S. Garg, D. K. Unruh and C. Krempner, Catal. Sci. Technol., 2020, 11, 211 RSC.
  20. G. S. Astakhov, M. M. Levitsky, X. Bantreil, F. Lamaty, V. N. Khrustalev, Y. V. Zubavichus, P. V. Dorovatovskii, E. S. Shubina and A. N. Bilyachenko, J. Organomet. Chem., 2019, 906, 121022 CrossRef.
  21. P. Loganathan, R. S. Pillai, A. Jennifer, E. Varathan, M. Kesavan and S. Shanmugan, New J. Chem., 2023, 47, 8439 RSC.
  22. A. N. Bilyachenko, V. N. Khrustalev, Z. Huang, K. D. Dubinina, E. S. Shubina, N. N. Lobanov, D. Sun, E. C. B. A. Alegria and A. J. L. Pombeiro, Nanoscale, 2024, 16, 19266 RSC.
  23. (a) A. N. Kulakova, A. N. Bilyachenko, A. A. Korlyukov, L. S. Shul'pina, X. Bantreil, F. Lamaty, E. S. Shubina, M. M. Levitsky, N. S. Ikonnikov and G. B. Shul'pin, Dalton Trans., 2018, 47, 15666 RSC; (b) A. N. Bilyachenko, V. N. Khrustalev, A. Y. Zueva, E. M. Titova, G. S. Astakhov, Y. V. Zubavichus, P. V. Dorovatovskii, A. A. Korlyukov, L. S. Shul’pina, E. S. Shubina, Y. N. Kozlov, N. S. Ikonnikov, D. Gelman and G. B. Shul’pin, Molecules, 2022, 27, 6205 CrossRef CAS; (c) A. Y. Zueva, A. N. Bilyachenko, I. S. Arteev, V. N. Khrustalev, P. V. Dorovatovskii, L. S. Shul'pina, N. S. Ikonnikov, E. I. Gutsul, K. G. Rahimov, E. S. Shubina, N. Reis Conceição, K. T. Mahmudov, M. F. C. Guedes da Silva and A. J. L. Pombeiro, Chem. – Eur. J., 2024, 30, e202401164 CrossRef CAS PubMed.
  24. (a) A. N. Bilyachenko, I. S. Arteev, V. N. Khrustalev, A. Y. Zueva, L. S. Shul’pina, E. S. Shubina, N. S. Ikonnikov and G. B. Shul’pin, Molecules, 2023, 28, 1211 CrossRef CAS PubMed; (b) I. S. Arteev, A. N. Bilyachenko, V. N. Khrustalev, N. N. Lobanov, E. S. Shubina, K. G. Ragimov, I. M. Garazade, M. L. Kuznetsov and A. J. L. Pombeiro, Inorg. Chem. Commun., 2026, 183, 115773 CrossRef CAS; (c) A. N. Bilyachenko, V. N. Khrustalev, I. S. Arteev, L. S. Shul’pina, N. S. Ikonnikov, M. V. Kirillova, E. S. Shubina, A. M. Kirillov, Y. N. Kozlov, N. N. Lobanov, K. G. Ragimov and D. Sun, Inorg. Chem., 2024, 63, 20404 CrossRef CAS; (d) A. N. Bilyachenko, M. M. Levitsky, A. A. Korlyukov, V. N. Khrustalev, Y. V. Zubavichus, L. S. Shul'pina, E. S. Shubina, A. V. Vologzhanina and G. B. Shul'pin, Eur. J. Inorg. Chem., 2018, 2505 CrossRef CAS; (e) A. N. Bilyachenko, V. N. Khrustalev, Y. V. Zubavichus, A. V. Vologzhanina, G. S. Astakhov, E. I. Gutsul, E. S. Shubina and M. M. Levitsky, Cryst. Growth Des., 2018, 18, 2452 CrossRef CAS; (f) A. N. Bilyachenko, A. N. Kulakova, M. M. Levitsky, A. A. Petrov, A. A. Korlyukov, L. S. Shul’pina, V. N. Khrustalev, P. V. Dorovatovskii, A. V. Vologzhanina, U. S. Tsareva, I. E. Golub, E. S. Gulyaeva, E. S. Shubina and G. B. Shul’pin, Inorg. Chem., 2017, 56, 4093 CrossRef CAS PubMed.
  25. M. Laird, C. Totée, P. Gaveau, G. Silly, A. van der Lee, C. Carcel, M. Unno, J. M. Bartlett and M. Wong Chi Man, Dalton Trans., 2021, 50, 81 RSC.
  26. (a) Z. Ma, K. T. Mahmudov, V. A. Aliyeva, A. V. Gurbanov, M. F. C. Guedes da Silva and A. J. L. Pombeiro, Coord. Chem. Rev., 2021, 437, 213859 CrossRef CAS; (b) G. B. Shul’pin and L. S. Shul’pina, Catalysts, 2021, 11, 186 CrossRef.
  27. (a) T. Punniyamurthy and L. Rout, Coord. Chem. Rev., 2008, 252, 134 CrossRef CAS; (b) T. F. S. Silva and L. M. D. R. S. Martins, Molecules, 2020, 25, 748 CrossRef CAS PubMed; (c) T. Zhang, H. Su, X. Zhang, Y. Zhao, J. Zhou, L. Zhang, S. Ye, Y. Ding and X. Sun, J. Am. Chem. Soc., 2025, 147, 12652 CrossRef CAS PubMed; (d) N. K. Singh, M. L. Shozi, L. Soobramoney, S. J. Zamisa and H. B. Friedrich, Eur. J. Inorg. Chem., 2025, e202400783 CrossRef CAS; (e) I. S. Fomenko, M. I. Gongola, L. S. Shul'pina, G. B. Shul'pin, N. S. Ikonnikov, Y. N. Kozlov and A. L. Gushchin, Inorg. Chim. Acta, 2024, 565, 121990 CrossRef CAS; (f) G. A. Correia, C. H. J. Franco, M. V. Kirillova, F. Gallou and A. M. Kirillov, Green Chem., 2025, 27, 3178 RSC; (g) R. Ramasubramanian, K. Anandababu, M. Kumar and R. Mayilmurugan, Dalton Trans., 2025, 54, 8788 RSC; (h) C. Wittmann, O. Palamarciuc, M. Dascalu, M. Cazacu, D. S. Nesterov, A. J. L. Pombeiro, P. Rapta and V. B. Arion, Dalton Trans., 2025, 54, 10984 RSC.
  28. (a) G. B. Shul’pin, J. Mol. Catal. A: Chem., 2002, 189, 39 CrossRef; (b) G. B. Shul’pin, Y. N. Kozlov, L. S. Shul’pina and P. V. Petrovskiy, Appl. Organomet. Chem., 2010, 24, 464 CrossRef.
  29. A. N. Bilyachenko, V. N. Khrustalev, Y. V. Zubavichus, A. V. Vologzhanina, G. S. Astakhov, E. I. Gutsul, E. S. Shubina and M. M. Levitsky, Cryst. Growth Des., 2018, 18, 2452 CrossRef CAS.
  30. A. N. Bilyachenko, V. N. Khrustalev, Z. Huang, P. V. Dorovatovskii, E. S. Shubina, N. N. Lobanov, Z. Wang, K. Ragimov, N. Reis Conceição, A. G. Mahmoud and A. J. L. Pombeiro, Chem. – Eur. J., 2025, 31, e202403604 CrossRef CAS.
  31. (a) G. A. Correia, C. H. Franco, M. V. Kirillova and A. M. Kirillov, Inorg. Chem. Front., 2025, 12, 5003 RSC; (b) A. N. Bilyachenko, V. N. Khrustalev, Y. V. Zubavichus, L. S. Shul’pina, A. N. Kulakova, X. Bantreil., F. Lamaty., M. M. Levitsky, E. I. Gutsul., E. S. Shubina and G. B. Shul’pin, Inorg. Chem., 2018, 57, 528 CrossRef CAS PubMed; (c) N. K. Singh, M. L. Shozi, L. Soobramoney, S. J. Zamisa and H. B. Friedrich, Eur. J. Inorg. Chem., 2025, e202400783 CrossRef CAS.
  32. (a) A. N. Bilyachenko, V. N. Khrustalev, E. I. Gutsul, A. Y. Zueva, A. A. Korlyukov, L. S. Shul’pina, N. S. Ikonnikov, P. V. Dorovatovskii, D. Gelman, E. S. Shubina and G. B. Shul’pin, Molecules, 2022, 27, 8505 CrossRef CAS PubMed; (b) A. N. Bilyachenko, I. S. Arteev, V. N. Khrustalev, L. S. Shul’pina, A. A. Korlyukov, N. S. Ikonnikov, E. S. Shubina, Y. N. Kozlov, N. Reis Conceição, M. F. C. Guedes da Silva, K. T. Mahmudov and A. J. L. Pombeiro, Inorg. Chem., 2023, 62, 13573 CrossRef CAS.
  33. P. J. Figiel, M. N. Kopylovich, J. Lasri, M. F. C. Guedes da Silva, J. J. R. Fraústo da Silva and A. J. L. Pombeiro, Chem. Commun., 2010, 46, 2766 RSC.
  34. CCDC 2494574: Experimental Crystal Structure Determination, 2025 DOI:10.5517/ccdc.csd.cc2pqt4d.

This journal is © The Royal Society of Chemistry 2026
Click here to see how this site uses Cookies. View our privacy policy here.