Pavlína Modlitbová , Lukas Brunnbauer , Gabriela Kalcikova , Aida Fazlic , Andreas Limbeck , Pavel Pořízka and Jozef Kaiser
First published on 21st August 2025
Microplastics have emerged as significant environmental contaminants due to the increasing production of polymer-based products and their limited disposal options. The persistence, bioaccumulation potential, and ability of microplastics to adsorb and transport toxic contaminants pose a risk to ecosystems and human health. Consequently, precise detection, characterization, and visualization of microplastics in various matrices are of paramount importance. However, the inherent challenges of analysing particles across broad size ranges with diverse physicochemical properties call for advanced analytical methods. This review focuses on two promising laser ablation-based techniques: Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Both methods have demonstrated their utility in spatially resolved analyses, enabling the elemental characterization of microplastics. The review systematically evaluates existing studies employing these techniques, highlighting their benefits, limitations, and potential applications. Furthermore, it emphasizes the complementary nature of LIBS and LA-ICP-MS, advocating their tandem use for a comprehensive analysis of microplastics. By addressing current gaps in microplastic environmental research, this review aims to propose novel methodologies that can help to advance the understanding of the environmental fate and impacts of microplastics, facilitating the development of effective mitigation strategies.