Open Access Article
ManLu Wanga,
JiaCheng Wub,
LiYing Haoa and
Qiang Wei
*a
aAnalytical & Testing Center, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. E-mail: weiqiang945@scu.edu.cn
bDepartment of Dental Technology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
First published on 19th July 2023
Herein, a facile method is proposed for the bulk synthesis of conductive non-metallic carbon nanospheres with controllable morphology to replace conventional metal calibration reference materials (CRMs), such as gold nanoparticles and copper grids. The prepared nanospheres had an average diameter of ∼222 ± 23 nm, where silicon dioxide formed the core and the shell was comprised of the carbon layer. The structure of the conductive carbon nanospheres was characterized using FTIR, SEM, EDS and TEM. Additionally, an innovative design was demonstrated by 3D printing the calibration carrier device. Furthermore, the stability and image linear distortion of the conductive carbon nanospheres were verified using analysis of variance (ANOVA). The results demonstrated that the accelerating voltage, magnification, and various positions in the X/Y axes had no significant effect on measured diameter of nanospheres, which was evident from all the p values being greater than 0.05. The comprehensive set of results reveal that conductive carbon nanospheres have great potential to replace traditional CRMs.
According to the National Institute of Standards and Technology (NIST, USA), gold nanoparticles, lithographically patterned silicon chips and copper grids are some of the commercially available CRMs that are commonly used today.6 However, the manufacturing process for these CRMs is typically demanding, highly costly, and requires specialized storage conditions. Additionally, they are more significantly affected by the environment (such as temperature and humidity) stemming from their own metal material.7 After repeated use at different environments, we cannot distinguish whether the difference between the measured true value and the standard value comes from CRMs or from the SEM equipment. Above all, the current CRMs cannot be prepared on a large scale in the laboratory. Therefore, it is particularly important to design and synthesize a reference non-metallic material at the laboratory level that has the same calibration as current CRMs, but are inexpensive, readily available and can be stored under regular conditions.
In this regard, hollow carbon spheres (HCS) have shown to possess excellent electrical conductivity and can fulfill the requirements of CRMs.8–14 However, CRMs also need to have a high level of mechanical strength. Hence, a material like silicon dioxide (SiO2) that has superior mechanical strength with controlled uniform spherical morphology can be used as the core material for HCS to enhance its mechanical strength.15–20 Therefore, the synthesis of conductive carbon-coated SiO2 nanospheres via a proper design strategy can fulfill the requirements of both conductivity and mechanical strength. Notably, there have been no reports on the use of carbon nanospheres for SEM calibration.
It is known that marine organisms, such as mussels, can attach to the surface of ships, reefs and other organisms by secreting strong adhesive Mytilus edulis foot proteins (Mefps), while Mefps contain a large number of catechol functional groups. Interestingly, dopamine (DA) has a molecular structure similar to Mefps and forms polydopamine (PDA) layers through covalent oxidative self-polymerization and non-covalent π–π stacking. It is the high catechol content of PDA that gives it strong interfacial adhesion properties and allows it to adhere to almost all types of organic and inorganic material surfaces.21–23 Herein, the synthesis approach is based on this phenomenon. Nanospheres of SiO2 can be prepared by a modified Stöber method.24–26 The oxidation-self-polymerization of PDA needs to be carried out under alkaline conditions,27–30 which coincides with the alkaline micro-environment of the synthesized SiO2 to further form a dense PDA layer on the SiO2 surface. Then the conductive carbon nanospheres are obtained by thermal cracking.
In this work, firstly, precursor PDA-coated SiO2 nanospheres (SiO2@PDA) are prepared by a one-step method. Secondly, conducting carbon nanospheres are prepared in bulk in the laboratory through the thermal decomposition of PDA. Finally, the prepared carbon nanospheres are used in the routine calibration of SEM, focusing on maintaining the stability and minimizing linear distortions in the image. In addition, the structural characterization of conducting carbon nanospheres is performed using Fourier transform infrared spectroscopy (FTIR), SEM, energy dispersive spectrometry (EDS) and transmission electron microscopy (TEM). Furthermore, the prepared conductive carbon nanospheres are also used for obtaining the particle size statistics to ascertain the presence any errors under different magnifications and accelerating voltages, and the corresponding error analysis is performed.
000×, 15
000× and 20
000×). Finally, the aforementioned procedure was repeated until 12 sets of combinations were recorded, where each combination was repeated 4 times to obtain a total of 48 SEM images. It is well known that the damage to the calibration specimen is more pronounced as the accelerating voltage is increased. For the image linearity distortion tests, the same sample area was placed in the center and four corners of the monitor, and a high acceleration voltage of 25 kV and magnification of 15
000× were used to record the SEM images. Additionally, 4 images were taken at each position, and a total of 20 SEM images were obtained. The test temperature and ambient humidity were 25 °C and 40%, respectively. The sample chamber of the JSM-IT500 SEM is given in Fig. 3, where the dashed orange line shows the designed and 3D printed calibration carrier device.
000×, 15
000× and 20
000×), which were selected as the independent variables. Subsequently, a one-way ANOVA was used to analyze the microsphere diameters measured at the center and corners to ascertain if there was any distortion in the image linearity. Additionally, the diameters of the nanospheres in the X and Y axes at these five positions were measured and noted as X0 − X4 and Y0 − Y4. Taking ΔXi = Xi − X0, ΔYi = Yi − Y0 (i = 1, 2, 3, 4), and ΔXmax and ΔYmax denote the maximum values of |ΔXi| and |ΔYi|, respectively. The linear distortion was calculated using the following equations:The microscopic morphology of the conductive carbon nanospheres was obtained using SEM in order to further demonstrate that the main structure was retained, as shown in Fig. 5. SEM images of the nanospheres obtained using a single injection and a drop-by-drop addition of TEOS are shown in Fig. 5A and C, respectively, whereas the corresponding particle size statistics of 120 nanospheres are shown in Fig. 5B and D, respectively. Evidently, the conductive carbon nanospheres prepared by the drop-by-drop TEOS addition method had better dispersion, stronger granularity, and less agglomeration. Moreover, the carbon nanospheres obtained by both methods maintained excellent spherical morphology without any obvious broken structures. The average particle size was relatively uniform with 228 ± 27 nm and 222 ± 23 nm for the single injection method and the drop-by-drop TEOS addition method, respectively.
![]() | ||
| Fig. 5 SEM images of the nanospheres obtained using a single injection (A and B) and a drop-by-drop addition (C and D) of TEOS. | ||
In order to determine the elemental distribution and the content information, SEM-EDS analysis of unsprayed gold carbon nanospheres was directly performed, as shown in Fig. 6. It can be seen that the carbon nanospheres were composed of C, O and Si elements, and the three elements were evenly distributed. The origin of the O and Si elements was attributed to the core SiO2, while C element originated from the carbon layer after the high temperature cracking of PDA. Additionally, the absence of elemental N in the EDS spectrum illustrated that the thermal cracking of PDA was essentially complete. The excellent electrical conductivity was ascribed to the high purity of the carbon layer.
These results demonstrate that the decomposition of PDA into conductive carbon layers by thermal cracking was effective, and the prepared conductive carbon nanospheres had good sphericity and high purity. TEM images were recorded to further examine the nanospheres in terms of the diameter of the core SiO2, the carbon layer encapsulation and the thickness of the nanospheres, as shown in Fig. 7. The carbon nanospheres were found to consist of two parts, which included a spherical SiO2 core (within the circular yellow dashed line) and an outer curly surface carbon layer (yellow dashed straight line). Moreover, the SiO2 core was found to be completely coated by the dense carbon layer without any noticeable defects. Additionally, the diameter of the core SiO2 and the thickness of the carbon layer were measured to be about 220 nm and 10 nm, respectively.
![]() | ||
| Fig. 8 SEM images of conductive carbon nanospheres at different accelerating voltages and magnifications. | ||
| Standard order | Run order | Accelerating voltage (kV) | Magnification | Measured diameter (nm) |
|---|---|---|---|---|
| 1 | 1 | 15 | 8000 | 241.49 ± 0.05 |
| 12 | 2 | 25 | 20 000 |
241.54 ± 0.04 |
| 8 | 3 | 20 | 20 000 |
241.54 ± 0.08 |
| 7 | 4 | 20 | 15 000 |
241.44 ± 0.03 |
| 3 | 5 | 15 | 15 000 |
241.51 ± 0.05 |
| 6 | 6 | 20 | 10 000 |
241.53 ± 0.03 |
| 2 | 7 | 15 | 10 000 |
241.46 ± 0.05 |
| 4 | 8 | 15 | 20 000 |
241.53 ± 0.08 |
| 9 | 9 | 25 | 8000 | 241.57 ± 0.04 |
| 11 | 10 | 25 | 15 000 |
241.5 ± 0.05 |
| 10 | 11 | 25 | 10 000 |
241.52 ± 0.02 |
| 5 | 12 | 20 | 8000 | 241.48 ± 0.06 |
As shown in Table S3,† the two-way ANOVA was used to investigate the influence of accelerating voltage, magnification, and the interaction effect of accelerating voltage and magnification on the detected magnitude of microsphere diameters. As shown in Table S3† and Fig. 9, irrespective of whether it is accelerating voltage, magnification or the interaction effect of the two, the p values are all above 0.05, indicating that they have no significant effect on the detected value of the microsphere diameters.38–40 In other words, under the condition of changing the accelerating voltage and magnification, there is no significant difference between the measured diameter data of microspheres. This result suggests that the nanospheres indeed have the potential to be used as a CRM.
![]() | ||
| Fig. 9 Two-way ANOVA plot for nanosphere diameters (independent variables: accelerating voltage and magnification). n.s. means p-value > 0.05 (each scatter in the bar represents a sample). | ||
000. Four parallel inspections were performed at each position. Fig. 10 shows only one of the captured images, and the rest are displayed in Fig. S14–S18.† The data obtained are shown in Table 2. The combined data of Tables S4, S5 and Fig. S19† were considered to pass the normality test and the homogeneity of variance test. Then, in order to explore linear distortion in the captured SEM images, a one-way ANOVA was used to investigate the effect of different imaging positions on the nanosphere diameters. As shown in Table 2, different imaging positions (center and four corners) in the X-axis and Y-axis directions had no significant effect on the nanosphere diameters, which is evident from the p value being greater than 0.05. Furthermore, it can also be clearly seen in Fig. 11 that there were no obvious differences between the nanosphere diameters imaged at various positions. Therefore, from the results shown in Table S6† and Fig. 11, it can be concluded that there was no obvious image linear distortion when the nanospheres were used as the CRM. Taking Fig. 10 as an example, the linear distortion in the X-axis and Y-axis were calculated as α = 0.012% and β = 0.082%, respectively.
![]() | ||
Fig. 10 SEM images of conductive carbon nanospheres at accelerating voltage of 25 kV and magnification of 15 000 (the center and four corners). | ||
| Position | Measured diameter measured in X direction (nm) | Measured diameter measured in Y direction (nm) |
|---|---|---|
| Center | 242.65 ± 0.01 | 242.58 ± 0.01 |
| Top left | 242.65 ± 0.01 | 242.58 ± 0.01 |
| Top right | 242.65 ± 0.01 | 242.58 ± 0.01 |
| Bottom left | 242.66 ± 0.01 | 242.6 ± 0.01 |
| Bottom right | 242.66 ± 0.02 | 242.58 ± 0.02 |
![]() | ||
| Fig. 11 One-way ANOVA plot of photographing positions for measured diameters in the X-axis direction and the Y-axis direction. n.s. means p-value > 0.05 (each scatter in the bar represents a sample). | ||
Finally, Table 3 shows the comparison between the CRMs commonly used at NIST and the carbon nanospheres in this paper, and it can be seen that as a non-metallic material, carbon nanospheres have nanoscale size with a diameter of 200–240 nm and excellent physical/chemical stability. As mentioned previously, carbon nanospheres had been proven to be a CRM with stable calibration effect. Hence in practical operation, it is placed in the SEM sample chamber that needs to be calibrated and several SEM photographs are taken at different accelerating voltages and magnifications. And choosing any nanosphere for diameter measurement, the smaller the diameter variability, the better the accuracy of the SEM equipment. Compared to traditional CRMs, carbon nanospheres can be synthesized in bulk at the laboratory level while enabling rapid calibration.
| CRMs | Material | Diameter | Manufacturing process41,42 | Chemical stability in humid air | Coefficient of thermal expansion (CTE), α (10−6 K−1, 20 °C)43–46 |
|---|---|---|---|---|---|
| Lithographically patterned silicon chips (NIST, USA) | Semiconductor | 50–1500 μm | Lithographic printing | Stable | 2.4 |
| Gold nanoparticles on a silicon chip (NIST, USA) | Precious metal | 10–60 nm | Arc plasma deposition system | Stable | 14.2 |
| Copper grids (NIST, USA) | Metal | 1–50 μm | Arc plasma deposition system | Unstable | 16.5–18.4 |
| 2Cu + O2 + CO2 + H2O = Cu2(OH)2CO3 | |||||
| Carbon nanospheres (this work) | Non-metal | 200–240 nm | Chemical coating | Stable | Carbon (0.5–2.0) |
| Silicon dioxide (2.2–2.6) |
FTIR analysis results indicated that the main structure of the composite was retained upon high-temperature heat treatment. The PDA layer underwent cracking and transformed into a conductive carbon layer. SEM and EDS analysis results showed that the prepared conductive carbon nanospheres were of excellent sphericity and high purity with an average particle size of ∼222 ± 23 nm. TEM analysis results showed that the diameter of the core silicon dioxide and the thickness of the carbon layer were ∼220 nm and ∼10 nm, respectively. Importantly, the two-way ANOVA revealed that the accelerating voltage and magnification had no significant effect on the diameter of the microspheres. Simultaneously, the one-way ANOVA showed that there were no significant differences in the measured diameters at various positions measured in the X-axis and Y-axis directions (p > 0.05).
Overall, the prepared conductive non-metallic carbon nanospheres CRM was found to be well stabilized under high vacuum and repeated bombardment with different accelerating voltages. This was validated by the fact that the captured 68 SEM images exhibited excellent resolution with no obvious distortion and shift. Moreover, the designed and 3D printed calibration carrier device also facilitated the calibration process. The carbon nanospheres CRM designed and synthesized in this paper are expected to further replace conventional metallic CRMs for routine SEM calibration.
Footnote |
| † Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra03956k |
| This journal is © The Royal Society of Chemistry 2023 |