Open Access Article
This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence

Highly efficient construction of an oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton and ring-opening of the bridged ring via C–O bond cleavage

Yi Cui, Jiayuan Lv, Tianhang Song, Jun Ren and Zhongwen Wang*
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China. E-mail: wzwrj@nankai.edu.cn

Received 27th February 2022 , Accepted 21st March 2022

First published on 25th March 2022


Abstract

We report herein a highly efficient strategy for construction of a bridged oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton through [3 + 2] IMCC (intramolecular [3 + 2] cross-cycloaddition), and the substituents and/or stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the rhamnofolane, tigliane and daphnane diterpenoids. Furthermore, ring-opening of the bridged oxa-[3.2.1]octane via C–O bond cleavage was also successfully achieved.


Rhamnofolane, tigliane, and daphnane are three families of diterpenoids displaying a broad range of biological activities such as antiviral, anticancer, anti-HIV, immunomodulatory and neurotrophic activities.1 Three representative members are neoglabrescin A2 and curcusones I/J.3 The unique structural features of these three compounds include a 5–7–6 tricyclic carbon skeleton with a trans-fused 5–7 bicyclic skeleton, a 4,7-bridged oxa-[3.2.1]octane skeleton and a methylene (methyl) group at C-6 (Fig. 1). Some other related natural products include crotophorbolone,4 phorbol,5 prostratin,6 resiniferatoxin7 and curcusone A.8
image file: d2ra01315k-f1.tif
Fig. 1 Representative rhamnofolane/tigliane/daphnane diterpenes with a trans-fused 5–7 bicyclic skeleton, a 4,7-bridged oxa-[3.2.1]octane skeleton (corresponding structures with a ring-opening of the oxa-[3.2.1]octane via C–O cleavage) and a methylene (methyl) group at C-6.

Due to their remarkable biological activities and unique and complex structures, these types of diterpenoids have drawn considerable attention from organic chemists, and many creative strategies have been developed for construction of the 5–7–6 tricycles with desirable substituents and stereochemistries on C-4, C-6, C-7 and C-10.9 Dai et al. reported the total syntheses of curcusones I and J by using an intramolecular Au-catalysed [4 + 3] cycloaddition for construction of the oxa-[3.2.1]octane-embedded 5–7-fused carbon skeleton and Diels–Alder [4 + 2] cycloaddition for construction of the additional 6-membered carbocycle (Scheme 1).10a Some other natural products have been reported by the groups of Wender (phorbol, resiniferatoxin and prostratin),11 Cha (phorbol),12 Baran (phorbol),13 Xu/Li (prostratin),14 Liu (crotophorbolone),15 Inoue (crotophorbolone, resiniferatoxin, prostratin and related molecules)16 and Dai/Adibekian (curcusones A–D).10b The groups of West9c and Maimone9h have reported attempts toward the total syntheses of related molecules through construction of a 4,7-bridged oxa-[3.2.1]octane skeleton respectively (Scheme 2).


image file: d2ra01315k-s1.tif
Scheme 1 Representative total syntheses of rhamnofolane/tigliane/daphnane diterpenes containing a 5–7–6 tricyclic carbon skeleton with a trans-fused 5–7 bicyclic skeleton and a 4,7-bridged oxa-[3.2.1]octane skeleton.

image file: d2ra01315k-s2.tif
Scheme 2 Representative synthetic strategies for construction of a bridged oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton with desirable substituents and stereochemistries.

We have previously reported a highly efficient construction of 5–7–6 tricyclic carbon skeleton with an intramolecular [4 + 3] IMPC (intramolecular [4 + 3] parallel-cycloaddition) of cyclopropane with dendralene/Diels–Alder [4 + 2] cycloaddition strategy.17 With this strategy, the fused 5–7 bicycle was efficiently constructed which matched the trans-stereochemisty, however a C-4 oxygen atom was not be direct. Following our previously developed [3 + 2] IMCC strategy,18a–h we have recently reported a novel and efficient construction of a bridged aza-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton with desirable substituents and stereochemistries toward total syntheses of calyciphylline D-type Daphniphyllum alkaloids (Scheme 3).18i Herein, we report the application of the [3 + 2] IMCC strategy for efficient construction of the bridged oxa-[3.2.1]octane-embedded 5–7–6 tricycle with stereochemistries on C-4, C-7 and C-10, as well as a methylene (methyl) group at C-6 matching those in neoglabrescin A, curcusones I/J and related rhamnofolane/tigliane/daphnane diterpenes.


image file: d2ra01315k-s3.tif
Scheme 3 Proposed [3 + 2] IMCC strategy for construction of the bridged oxa-[3.2.1]octane-embedded 5–7–6 tricycle with suitable substituents and stereochemistries on C-4, C-6, C-7 and C-10.

We started the research from benzyl bromide 2 which was prepared from a known compound 1 according to our recently reported method (Scheme 4).18i Compound 2 was then oxidized with NMO to afford aldehyde 3 which was used directly in the next step without further purification. Under catalysis of Sc(OTf)3 (0.2 equiv.), the [3 + 2] IMCC of aldehyde 3 was successfully carried out to afford compound 4 in 82% yield over two steps. The structure of 4 was confirmed by X-ray crystal structure analysis.19 Hereto, the bridged oxa-[3.2.1]octane-embedded 5–7–6 tricycle have been successfully constructed, the substituents and stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the corresponding natural products.


image file: d2ra01315k-s4.tif
Scheme 4 Construction of the bridged oxa-[3.2.1]octane-embedded 5–7–6 tricycle.

With compound 4 in hand, we started to investigate the ring-opening of the bridged oxa-[3.2.1]octane via C–O bond cleavage (Scheme 5). Krapcho decarboxylation of 4 afforded monoester 5 in 88% yield as a mixture of two diastereoisomers in a ratio of nearly 1[thin space (1/6-em)]:[thin space (1/6-em)]1. Reduction of 5 with DIBAL-H at −78 °C afforded aldehyde 6 in 85% yield. To our delight, the oxa-bridge was opened under catalysis of TMSOTf20 at −5 °C and a dehydration product 7 was obtained in 16% yield (brsm 53%) (Table 1, entry 1). Unfortunately, we failed to obtain compound 9 in several attempts either under acidic or basic21 conditions (Table 1, entries 2–8).


image file: d2ra01315k-s5.tif
Scheme 5 Ring-opening of the oxa-[3.2.1]octane via C–O bond cleavage.
Table 1 Ring-opening of the compound 6

image file: d2ra01315k-u1.tif

Entry Solvent Temperature Reagents Yield
1 DCM −5 °C TMSOTf 7, 16%
2 DCM r.t. TMSOTf, Et3N n.r.
3 DCM −78 °C to −10 °C TMSOTf Complex
4 MeOH r.t. ∼ reflux NaOMe n.r.
5 THF −78 °C LDA n.r.
6 THF 0 °C LDA Complex
7 THF 0 °C DIBAL-H Decom.
8 DCM 0 °C TIPSOTf n.r.


We have also explored the ring-opening of compound 5 under several conditions (Table 2). Both basic condition and single electron transfer reduction22 could not give 10a (Table 2, entries 1–3). Fortunately, we found that treatment of 5 with acetic toluene-p-sulfonic anhydride23 afforded compound 8 in 98% yield, as a mixture of two diastereoisomers (Table 2, entry 4). The ratio of the trans-/cis-isomers was 3[thin space (1/6-em)]:[thin space (1/6-em)]2 which could be confirmed with 1H NMR and density functional theory (DFT) calculations (see ESI). During the synthesis of viridin,24 Akai et al. found that the ring-opening product of a similar oxa-bridged compound was unstable. Methylation of the resultant oxyanion in situ with MeOTf gave a more stable product. However, we failed to get 10b by using this method (Table 2, entries 5 and 6).

Table 2 Ring-opening of the compound 5

image file: d2ra01315k-u2.tif

Entry Solvent Temperature Reagents Yield
a Ethylenediamine.b Acetic toluene-p-sulfonic anhydride, prepared by acetyl chloride and PTSA.25
1 THF 0 °C LDA Decom.
2 DME r.t. Li, EDAa Decom.
3 DME 0 °C Li, EDA Decom.
4 CH3CN r.t. Anhydrideb 8, 98% (trans[thin space (1/6-em)]:[thin space (1/6-em)]cis = 3[thin space (1/6-em)]:[thin space (1/6-em)]2)
5 THF −78 °C to 0 °C LHMDS, MeOTf Decom.
6 THF −78 °C to 0 °C LDA, MeOTf Decom.


In conclusion, we have developed a highly efficient strategy for construction of the bridged oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton through the [3 + 2] IMCC, the substituents and stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the corresponding natural products. Furthermore, the ring-opening of the bridged oxa-[3.2.1]octane via C–O bond cleavage was also successfully achieved. We strongly believe that this study will provide a novel and efficient strategy toward the total syntheses of related rhamnofolane, tigliane and daphnane diterpenoids.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (No. 2021YFD1700103) and National Natural Science Foundation of China (No. 21572103).

Notes and references

  1. (a) S.-G. Liao, H.-D. Chen and J.-M. Yue, Chem. Rev., 2009, 109, 1092–1140 CrossRef CAS PubMed; (b) A. Vasas and J. Hohmann, Chem. Rev., 2014, 114, 8579–8612 CrossRef CAS PubMed; (c) H.-B. Wang, X.-Y. Wang, L.-P. Liu, G.-W. Qin and T.-G. Kang, Chem. Rev., 2015, 115, 2975–3011 CrossRef CAS PubMed.
  2. A. T. Tchinda, A. Tsopmo, M. Tene, P. Kamnaing, D. Ngnokam, P. Tane, J. F. Ayafor, J. D. Connolly and L. J. Farrugia, Phytochemistry, 2003, 64, 575–581 CrossRef CAS PubMed.
  3. (a) J.-Q. Liu, Y.-F. Yang, X.-Y. Li, E.-Q. Liu, Z.-R. Li, L. Zhou, Y. Li and M.-H. Qiu, Phytochemistry, 2013, 96, 265–272 CrossRef CAS PubMed; (b) A. M. Sarotti, Org. Biomol. Chem., 2018, 16, 944–950 RSC.
  4. (a) H. W. Thielmann and E. Hecker, Liebigs Ann. Chem., 1969, 728, 158–183 CrossRef CAS; (b) H.-B. Wang, W.-J. Chu, Y. Wang, P. Ji, Y.-B. Wang, Q. Yu and G.-W. Qin, J. Asian Nat. Prod. Res., 2010, 12, 1038–1043 CrossRef CAS PubMed.
  5. (a) W. Hoppe, F. Brandl, I. Strell, M. Röhrl, I. Gassmann, E. Hecker, H. Bartsch, G. Kreibich and C. v. Szczepanski, Angew. Chem., Int. Ed., 1967, 6, 809–810 CrossRef CAS; (b) E. Hecker, H. Bartsch, H. Bresch, M. Gschwendt, B. Härle, G. Kreibich, H. Kubinyi, H. U. Schairer, C. v. Szczepanski and H. W. Thielmann, Tetrahedron Lett., 1967, 8, 3165–3170 CrossRef.
  6. (a) A. R. Cashmore, R. N. Seelye, B. F. Cain, H. Mack, R. Schmidt and E. Hecker, Tetrahedron Lett., 1976, 17, 1737–1738 CrossRef; (b) G. A. Miana, M. Bashir and F. J. Evans, Planta Med., 1985, 51, 353–354 CrossRef CAS PubMed; (c) Q. Tang, Z. Su, Z. Han, X. Ma, D. Xu, Y. Liang, H. Cao, X. Wang, X. Qu, A. Hoffman, H. Liu, D. Gu and D. Qiu, Phytochem. Lett., 2012, 5, 214–218 CrossRef CAS.
  7. (a) M. Hergenhahn, W. Adolf and E. Hecker, Tetrahedron Lett., 1975, 16, 1595–1598 Search PubMed; (b) W. Adolf, B. Sorg, M. Hergenhahn and E. Hecker, J. Nat. Prod., 1982, 45, 347–354 CrossRef CAS PubMed.
  8. W. Naengchomnong, Y. Thebtaranonth, P. Wiriyachitra, K. Okamoto and J. Clardy, Tetrahedron Lett., 1986, 27, 2439–2442 CrossRef CAS.
  9. Recent synthetic studies of tigliane, rhamnopholane, and daphnane diterpenoids: (a) K. Lee and J. K. Cha, Org. Lett., 1999, 1, 523–526 CrossRef CAS PubMed; (b) S. R. Jackson, M. G. Johnson, M. Mikami, S. Shiokawa and E. M. Carreira, Angew. Chem., Int. Ed., 2001, 40, 2694–2697 CrossRef CAS; (c) C. Stewart, R. McDonald and F. G. West, Org. Lett., 2011, 13, 720–723 CrossRef CAS PubMed; (d) P. A. Wender, N. Buschmann, N. B. Cardin, L. R. Jones, C. Kan, J.-M. Kee, J. A. Kowalski and K. E. Longcore, Nat. Chem., 2011, 3, 615–619 CrossRef CAS PubMed; (e) A. J. Catino, A. Sherlock, P. Shieh, J. S. Wzorek and D. A. Evans, Org. Lett., 2013, 15, 3330–3333 CrossRef CAS PubMed; (f) A. H. Hassan, J. K. Lee, A. N. Pae, S.-J. Min and Y. S. Cho, Org. Lett., 2015, 17, 2672–2675 CrossRef CAS PubMed; (g) L. V. Nguyen and A. B. Beeler, Org. Lett., 2018, 20, 5177–5180 CrossRef CAS PubMed; (h) Z. G. Brill, Y.-M. Zhao, V. H. Vasilev and T. J. Maimone, Tetrahedron, 2019, 75, 4212–4221 CrossRef CAS; (i) A. C. Wright, C. W. Lee and B. M. Stoltz, Org. Lett., 2019, 21, 9658–9662 CrossRef CAS PubMed; (j) S. Chow, T. Krainz, P. V. Bernhardt and C. M. Williams, Org. Lett., 2019, 21, 8761–8764 CrossRef CAS PubMed. For reviews, see: (k) R. Liu, J. Feng and B. Liu, Acta Chim. Sin., 2016, 74, 24–43 CrossRef CAS; (l) Z. Liu, Z. Ding, K. Chen, M. Xu, T. Yu, G. Tong, H. Zhang and P. Li, Nat. Prod. Rep., 2021, 38, 1589–1617 RSC.
  10. (a) Y. Li and M. Dai, Angew. Chem., Int. Ed., 2017, 56, 11624–11627 CrossRef CAS PubMed; (b) C. Cui, B. G. Dwyer, C. Liu, D. Abegg, Z.-J. Cai, D. G. Hoch, X. Yin, N. Qiu, J.-Q. Liu, A. Adibekian and M. Dai, J. Am. Chem. Soc., 2021, 143, 4379–4386 CrossRef CAS PubMed.
  11. (a) P. A. Wender, H. Kogen, H. Y. Lee, J. D. Munger Jr, R. S. Wilhelm and P. D. Williams, J. Am. Chem. Soc., 1989, 111, 8957–8958 CrossRef CAS; (b) P. A. Wender and F. E. McDonald, J. Am. Chem. Soc., 1990, 112, 4956–4958 CrossRef CAS; (c) P. A. Wender, K. D. Rice and M. E. Schnute, J. Am. Chem. Soc., 1997, 119, 7897–7898 CrossRef CAS; (d) P. A. Wender, C. D. Jesudason, H. Nakahira, N. Tamura, A. L. Tebbe and Y. Ueno, J. Am. Chem. Soc., 1997, 119, 12976–12977 CrossRef CAS; (e) P. A. Wender, J.-M. Kee and J. M. Warrington, Science, 2008, 320, 649–652 CrossRef CAS PubMed.
  12. K. Lee and J. K. Cha, J. Am. Chem. Soc., 2001, 123, 5590–5591 CrossRef CAS PubMed.
  13. S. Kawamura, H. Chu, J. Felding and P. S. Baran, Nature, 2016, 532, 90–93 CrossRef CAS PubMed.
  14. (a) G. Tong, Z. Liu and P. Li, Chem, 2018, 4, 2944–2954 CrossRef CAS; (b) G. Tong, Z. Ding, Z. Liu, Y.-S. Ding, L. Xu, H. Zhang and P. Li, J. Org. Chem., 2020, 85, 4813–4837 CrossRef CAS PubMed; (c) Z. Ding, Z. Liu, G. Tong, L. Hu, Y. He, Y. Bao, Z. Lei, H. Zhang and P. Li, Org. Chem. Front., 2020, 7, 1862–1868 RSC.
  15. T. Yu, Y. Sun, C. Tu, T. Chen, S. Fu and B. Liu, Chem. Sci., 2020, 11, 7177–7181 RSC.
  16. (a) T. Asaba, Y. Katoh, D. Urabe and M. Inoue, Angew. Chem., Int. Ed., 2015, 54, 14457–14461 CrossRef CAS PubMed; (b) D. Urabe, T. Asaba and M. Inoue, Bull. Chem. Soc. Jpn., 2016, 89, 1137–1144 CrossRef CAS; (c) S. Hashimoto, S.-i. Katoh, T. Kato, D. Urabe and M. Inoue, J. Am. Chem. Soc., 2017, 139, 16420–16429 CrossRef CAS PubMed; (d) A. Hirose, A. Watanabe, K. Ogino, M. Nagatomo and M. Inoue, J. Am. Chem. Soc., 2021, 143, 12387–12396 CrossRef CAS PubMed.
  17. C. Zhang, J. Tian, J. Ren and Z. Wang, Chem.–Eur. J., 2017, 23, 1231–1236 CrossRef CAS PubMed.
  18. (a) Z. Wang, Synlett, 2012, 23, 2311–2327 CrossRef CAS; (b) S. Xing, W. Pan, C. Liu, J. Ren and Z. Wang, Angew. Chem., Int. Ed., 2010, 49, 3215–3218 CrossRef CAS PubMed; (c) S. Xing, Y. Li, Z. Li, C. Liu, J. Ren and Z. Wang, Angew. Chem., Int. Ed., 2011, 50, 12605–12609 CrossRef CAS PubMed; (d) Y. Bai, W. Tao, J. Ren and Z. Wang, Angew. Chem., Int. Ed., 2012, 51, 4112–4116 CrossRef CAS PubMed; (e) J. Ren, J. Bao, W. Ma and Z. Wang, Synlett, 2014, 25, 2260–2264 CrossRef CAS; (f) Z. Wang, S. Chen, J. Ren and Z. Wang, Org. Lett., 2015, 17, 4184–4187 CrossRef CAS PubMed; (g) J. Zhang, S. Xing, J. Ren, S. Jiang and Z. Wang, Org. Lett., 2015, 17, 218–221 CrossRef CAS PubMed; (h) B. Sun, J. Ren, S. Xing and Z. Wang, Adv. Synth. Catal., 2018, 360, 1529–1537 CrossRef CAS; (i) Y. Cui, J. Ren, J. Lv and Z. Wang, Org. Lett., 2021, 23, 9189–9193 CrossRef CAS PubMed.
  19. CCDC 2110705 (4) contain the supplementary crystallographic data for this paper. ORTEP drawings of 4 can be found in the ESI..
  20. C. Le Drian, E. Vieira and P. Vogel, Helv. Chim. Acta, 1989, 72, 338–347 CrossRef CAS.
  21. B. A. Keay, D. Rajapaksa and R. Rodrigo, Can. J. Chem., 1984, 62, 1093–1098 CrossRef CAS.
  22. G. A. Molander and P. R. Eastwood, J. Org. Chem., 1995, 60, 4559–4565 CrossRef CAS.
  23. T. Kato, T. Suzuki, N. Ototani, H. Maeda, K. Yamada and Y. Kitahara, J. Chem. Soc., Perkin Trans. 1, 1977, 206–210 RSC.
  24. S. Hori, S. Ishida, G. Itoh, K. Sugiyama, C. Yuki, M. Egi, K. Yahata, T. Ikawa and S. Akai, Synlett, 2021, 32, 1187–1191 CrossRef CAS.
  25. Y. Mazur and M. H. Karger, J. Org. Chem., 1971, 36, 528–531 CrossRef CAS.

Footnotes

Dedicated to the 60th Anniversary of Institute of Elemento-Organic Chemistry of Nankai University.
Electronic supplementary information (ESI) available: Experimental details, DFT calculations, NMR spectra and X-ray crystal structure and data. CCDC 2110705. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d2ra01315k

This journal is © The Royal Society of Chemistry 2022
Click here to see how this site uses Cookies. View our privacy policy here.