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We report herein a highly efficient strategy for construction of a bridged oxa-[3.2.1]octane-embedded 5-7-
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6 tricyclic carbon skeleton through [3 + 2] IMCC (intramolecular [3 + 2] cross-cycloaddition), and the

substituents and/or stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the rhamnofolane,
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Rhamnofolane, tigliane, and daphnane are three families of
diterpenoids displaying a broad range of biological activities
such as antiviral, anticancer, anti-HIV, immunomodulatory and
neurotrophic activities." Three representative members are
neoglabrescin A> and curcusones I/].> The unique structural
features of these three compounds include a 5-7-6 tricyclic
carbon skeleton with a ¢rans-fused 5-7 bicyclic skeleton, a 4,7-
bridged oxa-[3.2.1]octane skeleton and a methylene (methyl)
group at C-6 (Fig. 1). Some other related natural products
include crotophorbolone,* phorbol,> prostratin,® resin-
iferatoxin” and curcusone A.*

Due to their remarkable biological activities and unique
and complex structures, these types of diterpenoids have
drawn considerable attention from organic chemists, and
many creative strategies have been developed for construction
of the 5-7-6 tricycles with desirable substituents and stereo-
chemistries on C-4, C-6, C-7 and C-10.° Dai et al. reported the
total syntheses of curcusones I and J by using an intra-
molecular Au-catalysed [4 + 3] cycloaddition for construction
of the oxa-[3.2.1]Joctane-embedded 5-7-fused carbon skeleton
and Diels-Alder [4 + 2] cycloaddition for construction of the
additional 6-membered carbocycle (Scheme 1).'°* Some other
natural products have been reported by the groups of Wender
(phorbol, resiniferatoxin and prostratin),"* Cha (phorbol),**
Baran (phorbol),* Xu/Li (prostratin),** Liu
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tigliane and daphnane diterpenoids. Furthermore, ring-opening of the bridged oxa-[3.2.1Joctane via C-O
bond cleavage was also successfully achieved.

(crotophorbolone),* Inoue (crotophorbolone, resiniferatoxin,
prostratin and related molecules)' and Dai/Adibekian (cur-
cusones A-D).’®® The groups of West* and Maimone® have
reported attempts toward the total syntheses of related mole-
cules through construction of a 4,7-bridged oxa-[3.2.1]octane
skeleton respectively (Scheme 2).
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Fig. 1 Representative rhamnofolane/tigliane/daphnane diterpenes
with a trans-fused 5-7 bicyclic skeleton, a 4,7-bridged oxa-[3.2.1]
octane skeleton (corresponding structures with a ring-opening of the
oxa-[3.2.1Joctane via C-O cleavage) and a methylene (methyl) group
at C-6.
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Scheme 1 Representative total syntheses of rhamnofolane/tigliane/
daphnane diterpenes containing a 5-7-6 tricyclic carbon skeleton
with a trans-fused 5-7 bicyclic skeleton and a 4,7-bridged oxa-[3.2.1]

octane skeleton.
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Scheme 2 Representative synthetic strategies for construction of
a bridged oxa-[3.2.1Joctane-embedded 5-7-6 tricyclic carbon skel-
eton with desirable substituents and stereochemistries.

We have previously reported a highly efficient construction
of 5-7-6 tricyclic carbon skeleton with an intramolecular [4 +
3] IMPC (intramolecular [4 + 3] parallel-cycloaddition) of
cyclopropane with dendralene/Diels-Alder [4 + 2] cycloaddi-
tion strategy.'” With this strategy, the fused 5-7 bicycle was
efficiently constructed which matched the trans-stereo-
chemisty, however a C-4 oxygen atom was not be direct.
Following our previously developed [3 + 2] IMCC strategy,***™"
we have recently reported a novel and efficient construction of
a bridged aza-[3.2.1]octane-embedded 5-7-6 tricyclic carbon
skeleton with desirable substituents and stereochemistries
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Scheme 3 Proposed [3 + 2] IMCC strategy for construction of the
bridged oxa-[3.2.1Joctane-embedded 5-7-6 tricycle with suitable
substituents and stereochemistries on C-4, C-6, C-7 and C-10.

toward total syntheses of calyciphylline D-type Daphniphyllum
alkaloids (Scheme 3).** Herein, we report the application of
the [3 + 2] IMCC strategy for efficient construction of the
bridged oxa-[3.2.1]octane-embedded 5-7-6 tricycle with
stereochemistries on C-4, C-7 and C-10, as well as a methylene
(methyl) group at C-6 matching those in neoglabrescin A,
curcusones I/] and related rhamnofolane/tigliane/daphnane
diterpenes.

We started the research from benzyl bromide 2 which was
prepared from a known compound 1 according to our recently
reported method (Scheme 4).** Compound 2 was then
oxidized with NMO to afford aldehyde 3 which was used
directly in the next step without further purification. Under
catalysis of Sc(OTf); (0.2 equiv.), the [3 + 2] IMCC of aldehyde 3
was successfully carried out to afford compound 4 in 82% yield
over two steps. The structure of 4 was confirmed by X-ray
crystal structure analysis.'® Hereto, the bridged oxa-[3.2.1]
octane-embedded 5-7-6 tricycle have been successfully con-
structed, the substituents and stereochemistries on C-4, C-6,
C-7 and C-10 fully match those in the corresponding natural
products.

With compound 4 in hand, we started to investigate the ring-
opening of the bridged oxa-[3.2.1]octane via C-O bond cleavage
(Scheme 5). Krapcho decarboxylation of 4 afforded monoester 5
in 88% yield as a mixture of two diastereoisomers in a ratio of
nearly 1: 1. Reduction of 5 with DIBAL-H at —78 °C afforded

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Construction of the bridged oxa-[3.2.1]Joctane-embedded
5-7-6 tricycle.
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Scheme 5 Ring-opening of the oxa-[3.2.1loctane via C-O bond
cleavage.
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Table 1 Ring-opening of the compound 6

MeO. MeO

9a, R=H

9b, R=TMS

9c, R=TIPS
Entry  Solvent  Temperature Reagents Yield
1 DCM —5°C TMSOTf 7,16%
2 DCM r.t. TMSOTT, Et;N n.r.
3 DCM —78°Cto —10 °C TMSOTf Complex
4 MeOH r.t. ~ reflux NaOMe n.r.
5 THF —78°C LDA n.r.
6 THF 0°C LDA Complex
7 THF 0°C DIBAL-H Decom.
8 DCM 0°C TIPSOTf n.r.

aldehyde 6 in 85% yield. To our delight, the oxa-bridge was
opened under catalysis of TMSOTf*® at —5 °C and a dehydration
product 7 was obtained in 16% yield (brsm 53%) (Table 1, entry
1). Unfortunately, we failed to obtain compound 9 in several
attempts either under acidic or basic** conditions (Table 1,
entries 2-8).

We have also explored the ring-opening of compound 5
under several conditions (Table 2). Both basic condition and
single electron transfer reduction® could not give 10a (Table 2,
entries 1-3). Fortunately, we found that treatment of 5 with
acetic toluene-p-sulfonic anhydride* afforded compound 8 in
98% yield, as a mixture of two diastereoisomers (Table 2, entry
4). The ratio of the trans-/cis-isomers was 3 : 2 which could be
confirmed with "H NMR and density functional theory (DFT)
calculations (see ESI}). During the synthesis of viridin,** Akai
et al. found that the ring-opening product of a similar oxa-
bridged compound was unstable. Methylation of the resul-
tant oxyanion in situ with MeOTf gave a more stable product.
However, we failed to get 10b by using this method (Table 2,
entries 5 and 6).

In conclusion, we have developed a highly efficient strategy
for construction of the bridged oxa-[3.2.1]octane-embedded 5-
7-6 tricyclic carbon skeleton through the [3 + 2] IMCC, the
substituents and stereochemistries on C-4, C-6, C-7 and C-10
fully match those in the corresponding natural products.
Furthermore, the ring-opening of the bridged oxa-[3.2.1]octane
via C-O bond cleavage was also successfully achieved. We
strongly believe that this study will provide a novel and efficient
strategy toward the total syntheses of related rhamnofolane,
tigliane and daphnane diterpenoids.
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Table 2 Ring-opening of the compound 5
MeO
Entry Solvent Temperature Reagents Yield
1 THF 0°C LDA Decom.
2 DME r.t. Li, EDA? Decom.
3 DME 0°C Li, EDA Decom.
4 CH;CN r.t. Anhydride? 8, 98% (trans : cis = 3 : 2)
5 THF —78°Cto 0°C LHMDS, MeOTf Decom.
6 THF —78°Cto 0°C LDA, MeOTf Decom.

“ Ethylenediamine. ? Acetic toluene-p-sulfonic anhydride, prepared by acetyl chloride and PTSA.>®
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