Yian Chena,
Zhouyang Xianga,
Desheng Wangb,
Jian Kang*b and
Haisong Qi*a
aState Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. E-mail: qihs@scut.edu.cn
bState Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China. E-mail: larance0130@163.com
First published on 23rd June 2020
Environmentally friendly cellulose/GO/TiO2 hydrogel photocatalyst has been successfully fabricated via a green, simple, and one-step method and evaluated as the photocatalyst and adsorbent for the removal of methylene blue (MB). The XRD and FTIR analysis suggested the strong interaction among cellulose, GO and TiO2, resulting from the formation of hydrogen bonds. Due to the unique porous structure of cellulose hydrogel and introduction of GO, the cellulose/GO/TiO2 hydrogel showed superior (degradation ratio ∼ 93%) and reproducible (no significant change during the ten consecutive cycles) performance in the removal of MB under UV light. Consequently, the prepared cellulose/GO/TiO2 hydrogel can be applied as an eco-friendly, high-performance, reproducible, and stable photocatalyst and adsorbent for the removal of MB. This green hydrogel is a promising candidate for dye wastewater treatment. Moreover, this work is expected to extend the scope of bio-templated synthesis of other nanomaterials for various applications.
Current treatment methods for dye wastewater include physical, chemical, and biological methods, and so on. Various removal methods have been studied by adsorption,1–3 chemical catalytic degradation,4–6 liquid membrane separation,7 electrolysis,8 biological treatments,9 oxidation,10 and other processes.11 However, these processes vary in their effectiveness, costs, and environmental impacts.12 Among these processes, the physical adsorption process and chemical catalytic degradation are much more competitive than other methods for their ready availability, lower cost, and a wider range of applications. It is of vital importance to search for adsorbents which meet the requirements and standards of the water treatment industry and also are environmentally friendly, highly effective, low cost, and being available in tonnage quantities.
In recent years, bio-templating techniques with polysaccharides-based material (cellulose, chitosan, lignin, etc.) are actively explored in the fields of metal oxides synthesis due to their environmentally friendly process, facile, required low energy and cost-effective concerns. Cellulose is a natural polysaccharide which has the widest distribution and most abundance on earth. Above all, they can be regenerated. The beads, films, and resins made from natural cellulose were used for heavy metals13–15 and hazardous azo dyes adsorptions.16,17 High adsorption enthalpies generated by dyes allow as many aromatic cores to come close to the cellulose surfaces as possible.18 Furthermore, cellulose is applicable for supporting TiO2 nanoparticles owing to its good compatibility with TiO2 nanoparticles. Several types of low-dimensional cellulose materials have been reported, including cellulose nanofibers and films by electrospinning and phase separation method, respectively.19–23
However, as compared to other polysaccharides-based materials, cellulose-based materials are the most popular bio-templates used because of their insolubility, which renders them more appropriate for bio-replication than for nanoparticle growth control. For instance, Lu and co-worker had successfully fabricated a millimetre-long TiO2 fiber with nanostructures using bamboo cellulose fibre as a template. Moreover, cellulose-based material not only can be employed as a bio-template but also to form organic–inorganic hybrid materials with resultant nanomaterials. In the case of zinc oxide (ZnO), bacterial cellulose (BC) membrane was successfully prepared as a host matrix to promote hybridization with Zn2+ ions. The resulting nanocomposites exhibited good mechanical properties and high photocatalytic activity in the degradation of methyl orange. Recently, there is increasing attention in the development of visible light-driven TiO2 photocatalyst.24–29 This is because the traditional TiO2 possesses a relatively large band gap, which means that it can only be activated under UV region. This property limits the practical efficiency for solar applications. Currently, there is increasing attention in the doping of TiO2 with non-metal atoms since it can avoid deteriorating thermal stability of the TiO2 lattice structure. Titania is one of the most important and widely studied inorganic materials, with a broad range of applications such as pigmenting, gas sensors, corrosion protection, optical coatings, solar cells, and photocatalysis. TiO2 can be prepared as films, rods, or nanoparticles as required for the desired applications. For the preparation of catalytically active TiO2 nanoparticles at a larger scale, many methods have been developed, but the only ones of industrial importance are flame pyrolysis and chemical vapour synthesis. Cellulose-based TiO2 nanocomposite materials, combining the advantages of green support with the photocatalytic properties of the TiO2, are currently intensely studied for applications in photocatalysis, water purification, or self-cleaning materials.
Graphene oxide (GO), an oxidation product of graphene, is a single sheet from graphite and has the ideal two-dimensional (2D) structure with a monolayer of carbon atoms packed into a honeycomb crystal plane. Considerable attention has been drawn to both graphene and the oxide form over the past several years because of their unique physical and chemical properties and potential applications in various research and industrial fields. Recent studies showed that the graphene oxide is ideal for adsorption of dyes and good for acting as a catalyst carrier substance due to its good mechanical strength and large surface area.11,30 Therefore, based on the cellulose adsorption properties and the intrinsic properties of graphene oxide, we combined them and introduced TiO2 to make the removal of dyes more efficient.
In our previous works, we have reported the successful preparation of porous cellulose materials (as films or hydrogels) by dissolving cellulose and dispersing GO in sodium hydroxide/urea/water solution.31,32 It provides a platform for us to prepare the “dip-catalyst” hydrogels for the removal of methylene blue (MB) dyes. A “dip-catalyst” is accentuated by its great recyclability and convenient deployment, especially due to the fact that its immersion/removal into the reaction media can turn the reaction on/off almost instantaneously. In this work, we aimed to fabricate the green polymer composite aerogel via the addition of TiO2 in the cellulose/GO hydrogels. In the present paper, it is believed that the resultant cellulose/GO hydrogels can be used as an effective bio-template nanoreactor for the dispersion of TiO2 nanostructures through its three-dimensional porous structures and suitable nanopore size distribution. Although, the cellulose matrix contains GO and TiO2 nanoparticles, it maintains the hydrogel structure during the catalyst reaction, which will not result in secondary pollution.
The crystal structures of cellulose/GO/TiO2, cellulose/TiO2, and cellulose/GO composites were further characterized using XRD (Fig. 2c). The peaks at 2θ value of 25.3, 37.8, 48.0, 54.0, 55.1, 62.7, 68.8, 70.3, and 75.1 were indexed to (101), (004), (200), (105), (211), (204), (116), (220), and (215) crystal planes of anatase TiO2 in cellulose/GO/TiO2 and cellulose/TiO2 composite, respectively. XPS spectrum of cellulose/GO/TiO2, and cellulose/GO were also carried out to study the element composition and chemical states of elements. As shown in Fig. S1a,† the typical photoelectron peaks of C, O and Ti elements confirmed the presence of these three elements. The Ti 2p spectrum of cellulose/GO/TiO2 and bare TiO2 shows two symmetrical peaks with binding energies at 459.4 and 465.1 eV, which are attributed to Ti 2p3/2 and Ti 2p1/2, respectively (shown in Fig. S1b†).
Fig. 2d shows the FTIR spectrum of cellulose/GO/TiO2, cellulose/TiO2, and cellulose/GO. As compared to the cellulose/GO composite, it was observed that O–H stretching absorption peaks in cellulose/GO/TiO2 composite was slightly shifted from high (3336 cm−1) to low absorption peak (3274 cm−1), and its intensity significantly increased. This could be attributed by the interaction between the O–H groups of cellulose and Ti–O bond of TiO2. Previous study suggested that this might be due to a strong interaction between the hydroxyl groups of cellulose and the TiO2 particles through hydrogen bonding interactions.33 Zhang et al.34 also suggested that it might be due to the partial C–OH occupied by a Ti–O bond. Therefore, it promoted the strong interfacial interaction between cellulose chain and TiO2 nanoparticles. The strong interfacial interaction increases the durability of the nanoparticles within the nanocomposite membrane and decreases the detachment tendency of the nanofillers in the polymer matrices.35
Fig. 3 UV-Vis analysis of the photocatalytic degradation of MB by cellulose/GO/TiO2 hydrogel with the increasing reaction time. |
The removal efficiency of different hydrogels under UV light is presented in Fig. 4a. It can be seen that cellulose and cellulose/GO hydrogels have almost no photoactivity on the removal of MB under UV light. The insignificant removal efficiency of MB was due to the adsorption of MB molecules on the surface of cellulose and GO sheets. These results indicated that the photocatalytic degradation of MB did not occur without TiO2 in the cellulose matrix. While ∼93 and ∼80% of the initial MB dyes were decomposed by cellulose/GO/TiO2 and cellulose/TiO2 hydrogel after 120 min under UV light. The excellent performance in removal efficiency of MB can be attributed to the synergistic effects between GO sheets and TiO2 and the adsorption of MB molecules on the surface of cellulose and GO sheets. To clarify the absorption effect on the removal efficiency of MB dyes, the adsorption activity of different hydrogels was carried out under dark condition for 24 h. As shown in Fig. 4b, the cellulose/GO/TiO2 hydrogel was transformed to nattier blue after soaking in the MB solution for 24 h, and many MB molecules remain in the cellulose/GO/TiO2 hydrogel. Furthermore, the existence of GO sheets could enhance the absorption capacity and therefore, will promote high removal efficiency of MB under the dark condition for 24 h. Furthermore, the cellulose/GO/TiO2 hydrogel also exhibited higher photoactivity on the removal of MB, compared to bare TiO2 and GO/TiO2 system (shown in Fig. S2†).
Fig. 4 (a) Photocatalytic degradation rate of MB over the different samples under UV light; (b) absorption rate of MB over the different samples under dark condition. |
The reproducible of our cellulose/GO/TiO2 hydrogel for the photodegradation of MB under UV light and adsorption of MB under dark condition were also carried out in Fig. 5. The photodegradation and adsorption of MB was monitored for ten consecutive cycles, each for 120 min (under UV light) and 24 h (under dark condition), respectively. After each cycle, the cellulose/GO/TiO2 hydrogel was taken off from MB solution and washed thoroughly with water, then taken into the fresh MB solution. In Fig. 5a, there was no significant decrease in the removal efficiency of MB under UV light during the ten consecutive cycles, indicating the excellent reproducible and durability of the cellulose/GO/TiO2 hydrogel for the photodegradation of MB. Notedly, in the case of UV light, the photodegradation of MB which is due to the synergetic effect between TiO2 and GO played a major role in the removal of MB. The introduction of GO sheets probably brought in an intermediate energy level above the valence band of TiO2, thereby narrowing the band-gap to induce UV light absorption. Therefore, the high and stable performance of the cellulose/GO/TiO2 hydrogel for the photodegradation of MB should be attributed to the co-effect of between TiO2 and GO. Moreover, with the unique porous structure of cellulose hydrogel and two-dimensional planar structure of GO, the enhanced absorptivity of cellulose/GO/TiO2 hydrogel also promoted the high and stable performance of this hydrogel.
Conversely, there was an obvious decrease in the removal efficiency of MB under dark condition in Fig. 5b. In the case of dark condition, the removal of MB is ascribed to the absorption of MB on the surface of cellulose and GO due to the porous structure of hydrogel. As shown in Fig. 5b, there is an obvious change in the cellulose/GO/TiO2 hydrogel after the first absorption run. Although the hydrogel was washed thoroughly with water before the next run, many MB molecules remain in the cellulose/GO/TiO2 hydrogel, leading to the weakening of the next absorption effect of this hydrogel.
In addition, light absorption plays an important role in the photodegradation of MB. Fig. 6 shows the electronic absorption spectra of cellulose/TiO2 and cellulose/GO/TiO2 hydrogel. There is a clear red shift in the absorption edge of cellulose/GO/TiO2 hydrogel, compared to cellulose/TiO2 hydrogel. This result can be attributed to the interaction between GO and TiO2. The introduction of GO sheets probably brought in an intermediate energy level above the valence band of TiO2, thereby narrowing the band-gap to induce UV light absorption. This narrowing is also beneficial for a more efficient utilization of light in the removal of MB.
Charge transfer efficiency is another important factor during the photocatalysis process. As shown in Fig. 7, the typical electrochemical impedance spectra of cellulose/TiO2 and cellulose/GO/TiO2 hydrogel were presented as Nyquist plots, and it is observed that, arc radius on the plot of cellulose/GO/TiO2 hydrogel is smaller than that of cellulose/TiO2 hydrogel, which indicated the higher efficiency of charge separation. GO here acted as an electron acceptor and inhibited electron–hole recombination, and the strong coupling between TiO2 and GO facilitated interfacial charge transfer.
Fig. 7 Electrochemical impedance spectroscopy (EIS) Nyquist plots of cellulose/TiO2 and cellulose/GO/TiO2 hydrogel. |
Overall, cellulose/GO/TiO2 hydrogel was prepared by a simple, green and one-step process. Owing to its unique porous structure and introduction of GO, cellulose/GO/TiO2 hydrogel showed superior and reproducible performance in the removal of MB under UV light. Therefore, the schematic representation of photocatalytic degradation and absorption mechanism of cellulose/GO/TiO2 hydrogel for MB under UV light was proposed (Fig. 8). The enhanced photocatalytic and adsorption performance for the cellulose/GO/TiO2 hydrogel can be ascribed to their unique structure with the following favourable properties: (i) the porous structure of cellulose hydrogel with a relatively high surface area can provide more active sites and increase surface adsorption of reactant species on the surface of composite photocatalysts; (ii) the conjugated MB molecules could bind to large aromatic domains on GO sheets via π–π stacking, which could favour increased reactivity36 and effectively improve the light absorption in the visible region; (iii) the high photocatalytic and reproducible performance of our hydrogel could also be a result of the strong coupling between TiO2 and GO which facilitates interfacial charge transfer (with GO as an electron acceptor) and inhibits electron–hole recombination.37
Fig. 8 The schematic representation of photocatalytic degradation and absorption mechanism of cellulose/GO/TiO2 hydrogel for MB under UV light. |
In order to have a rough estimation of the removal efficiency of cellulose/GO/TiO2 hydrogel as the catalyst to degrade MB, the degradation performance and stability were compared with those reported in the literature. Table 1 contains different catalysts able to degrade MB dye at similar operational conditions. Under this condition, most of the recent reports have lower removal percentage of MB than the here reported ones. Compared to them, the cellulose/GO/TiO2 hydrogel exhibited good degradation performance and excellent recyclability. Moreover, another advantage of the hydrogel as the catalyst is that the cellulose matrix contains GO and TiO2 nanoparticles and maintains the hydrogel structure during the catalyst reaction, which will not result in secondary pollution. The “dip-catalyst” can be easily removed from the polluted water after the degradation reaction. In other words, it is easy to start and stop the degradation reaction by taking in and out the whole hydrogel. It is obvious that the cellulose/GO/TiO2 hydrogel, with its sustainable feature, convenient fabrication, great catalytic efficiency, good recyclability, and easy removability is expected to be very useful in MB dyes removal.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra04509h |
This journal is © The Royal Society of Chemistry 2020 |