Nabil A. Ibrahima,
Basma M. Eida,
Eman Abd El-Azizb,
Tarek M. Abou Elmaaty*c and
Shaimaa M. Ramadanc
aTextile Research Division, National Research Centre, Scopus Afflitiation ID 60014618, (El-Behouth St.), Dokki, Giza, Egypt. E-mail: nabibrahim49@yahoo.co.uk; basmaeid@yahoo.com; Fax: +202 333 70931
bFaculty of Applied Arts, Printing, Dyeing and Finishing Department, Benha University, Benha, Egypt. E-mail: emanabdelaziz@hotmail.com
cDepartment of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta, Egypt. E-mail: tasaid@du.edu.eg; designer_shemo@yahoo.com
First published on 30th June 2017
Several metal oxide nanoparticles (MO–NPs), namely ZrO–NPs, ZnO–NPs, and TiO2–NPs, have been used to modify traditional finishing formulations to develop multifunctional cotton-containing fabrics. The fabrics used were cotton (100%), cotton/polyester blend (65/35) and cotton/polyester blend (50/50), which were treated with each finishing formulation using the pad-dry-cure technique. The imparted functional properties in the absence and presence of the nominated MO–NPs were evaluated. The positive effects of the incorporated MO–NPs in improving and/or imparting new functional properties, like easy-care, UV-protection, antibacterial functionality, water and oil repellency and flame proofing efficiency, were shown to be governed by the type of substrate and its cellulosic/polyester components, type of MO–NPs, finishing formulation components and mode of interaction between the active ingredients and active sites of the treated substrate. Tentative mechanisms were suggested, and the surface modification and composition of the selected fabric samples were analyzed using SEM and EDX. Future studies will further investigate the impact of incorporating the nominated MO–NPs with other active ingredients in the finishing formulation on the durability of fabric against washing, as well as on the change in other performance and physicomechanical properties.
Accordingly, the main task of the present work was to search for appropriate finishing formulations, using certain organic/nanometal oxide hybrid materials, to impart multifunctional and durable properties to various cotton-containing substrates, namely cotton (100%), cotton/polyester (65/35) and cotton/polyester (50/50) fabrics, taking into account both applicability and environmental concerns, as well as consumer demands.
UV-protection functionality, expressed as UV-protection factor (UPF), was assessed according to the AS/NZS 4399:1996, and protection was rated as good, very good or excellent, when UPF values were 15–24, 25–39, or above 40, respectively.19 The water repellency (WRR) rating and oil repellency rating (ORR), were evaluated using the Spray Test Method 22-200520 and AATCC Test Method 118-2013, respectively.21 The flame retardation properties of the untreated and treated fabric samples were analyzed using the flame test procedure US CPSC 16 CFR PART 1610.22
![]() | ||
Fig. 1 SEM images and EDX spectra of untreated cotton fabric (a and b); fabric finished with silicon softener (c and d); fabric finished with silicon softener in the presence of ZnO–NPs (e and f). |
Fig. 2 shows the surface morphology change and the analysis of the EDX spectrum of the treated cotton fabrics with the organic UV-absorber, UV-Sun®, in the presence of the ZnO–NPs. The SEM image in Fig. 2c shows a heavy deposition of particles related to both UV-Sun® and ZnO–NPs, and some agglomeration of these particles at the upper layer of the finished fabric surface can be obviously seen. The existence of Zn along with other elements, i.e., C, O and N, is presented in the EDX spectrum of the finished fabric sample.
![]() | ||
Fig. 2 SEM images and EDX spectra of cotton fabric finished with UV-finishing agent (UV-Sun®) in the presence of ZnO–NPs. |
On the other hand, SEM images and EDX spectra of the cotton fabric samples finished using Oleophobol® CO, without and with TiO2–NPs, are shown in Fig. 3. A thin layer of the water/oil repellent agent is distributed along the fiber surface, as shown in Fig. 3a. In Fig. 3c, the deposition of MO–NPs particles can be observed clearly on the fabric surface. On the other hand, the EDX spectrum of the fabric finished with Oleophobol® CO in the absence of TiO2–NPs shows a fluorine peak (Fig. 3b), while the spectrum of the finished fabric in the presence of TiO2–NPs shows a Ti peak related to the TiO2–NPs used in the finishing formulation, along with other elements, i.e., F, N, C and O.
![]() | ||
Fig. 3 SEM images and EDX spectra of cotton fabric finished with water/oil agent Oleophobol® CO (a and b); and finished with water/oil agent in the presence of TiO2–NPs (c and d). |
Additionally, the differences in the deposition of HEIQ® Pure TF used as an antibacterial agent on the surface of the finished fabric sample in the absence and presence of Zn–NPs can be clearly noticed in the SEM images in Fig. 4a and c. The EDX spectra confirm the existence of Ag related to the antibacterial agent used alone (Fig. 4b), and also confirm the existence of Ag and Zn in the case of using the antibacterial agent in the presence of Zn–NPs.
![]() | ||
Fig. 4 SEM images and EDX spectra of the cotton fabric finished with the antibacterial agent HEIQ® Pure TF (a and b); and finished with the antibacterial agent in the presence of ZnO–NPs (c and d). |
Finally, Fig. 5 illustrates the SEM images and EDX spectra of the cotton fabric samples treated with Flovan® CWF in the absence and presence of Zn–NPs. Fig. 3a shows the deposition of the Flovan® CWF particles on the finished fabric surface, and this deposition can be also seen in Fig. 3c, along with the deposition of different types of particles that are attributed to the existence of Zn–NPs on the fabric surface. The EDX spectra of the fabric treated with the flame retardant agent show peaks of phosphorous and sulfur and an increase in the percentage of nitrogen compared with the other finishing formulations. These elements are attributed to the flame retardant used as a finishing agent and are present in the spectral patterns of the finished fabric samples without and with MO–NPs in the finishing formulation, while an additional Zn peak can be clearly observed in the EDX spectrum of the fabric treated with Flovan® CWF in the presence of Zn–NPs (Fig. 5d).
![]() | ||
Fig. 5 SEM images and EDX spectra of cotton fabric finished with flame proofing agent (Flavon® CWF) (a and b); and finished with flame proofing agent in the presence of ZnO–NPs (c and d). |
Nanometal oxide (25 g L−1) | Cotton | Cotton/polyester (65/35) | Cotton/polyester (50/50) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb (%) | WRAc (W + F)° | SRd (μm) | UPFe | ZIf (mm) | Nb (%) | WRAc (W + F)° | SRd (μm) | UPFe | ZIf (mm) | Nb (%) | WRAc (W + F)° | SRd (μm) | UPFe | ZIf (mm) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
G+ve | G−ve | G+ve | G−ve | G+ve | G−ve | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a Finishing bath constituents: Arkofix® NEC (50 g L−1); MgCl2·6H2O/citric acid (10/2 g L−1); silicone softener (30 g L−1); nanometal oxide (25 g L−1); nonionic wetting agent (2 g L−1); wet-pickup (80%); drying at 100 °C/3 min; curing at 150 °C/3 min.b Nitrogen content.c Wrinkle recovery angle (warp + weft).d Surface roughness.e Ultraviolet protection factor.f Zone of inhibition; G+ve: Gram-positive bacteria (S. aureus); G−ve: Gram negative bacteria (E. coli). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
None | 0.456 | 200 | 16.83 | 16 | 2.0 | 1.5 | 0.435 | 235 | 16.12 | 25 | 3.0 | 2.0 | 0.379 | 250 | 14.32 | 33 | 3.5 | 2.5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZrO2 | 0.458 | 208 | 16.89 | 35 | 11.5 | 9.0 | 0.436 | 240 | 16.24 | 45 | 13.0 | 11.0 | 0.380 | 258 | 14.40 | 67 | 14.5 | 12.5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZnO | 0.463 | 214 | 17.04 | 48 | 16.0 | 14.0 | 0.453 | 250 | 16.38 | 65 | 18.0 | 16.0 | 0.388 | 264 | 14.78 | 98 | 19.5 | 18.0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TiO2 | 0.476 | 220 | 16.96 | 72 | 13.0 | 11.5 | 0.468 | 262 | 16.30 | 87 | 14.5 | 13.0 | 0.395 | 276 | 14.58 | 126 | 16.0 | 15.0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Untreated | — | 125 | 20.32 | 9 | — | — | — | 160 | 17.99 | 15 | — | — | — | 195 | 16.84 | 20 | — | — |
It is also clear from Table 1 that the individual inclusion of the nominated nanomaterials into the finishing formulation is accompanied by a marginal increase in % N, an improvement in fabric resiliency, a slight variation in surface rigidity and a remarkable improvement in both the anti-UV and antibacterial functionalities, regardless of the substrate used. The marginal increase in % N and the reasonable improvement in the WRA values highlight the positive role of the added nanomaterials in accelerating and enhancing the extent of catalyzation and fixation of the crosslinker and the silicone softener onto/within the fabric structure.3,25 Moreover, the slight increase in surface rigidity is a direct consequence of the surface immobilization of the used nanometal oxides onto the fabric surface, taking both the particle size and amount into consideration.
Additionally, the remarkable improvement in the UV-protection capability of the nanometal oxide-loaded substrates can be discussed in terms of their ability to block and shield from harmful UV-rays, especially UV-B (λ: 280–315 nm). The extent of the improvement in the UV-protection capability is governed by the type of substrate, fabric morphology, polyester content, extent of crosslinking/coating and loading of the nominated nanometal oxides, as well as the ability of the nanoparticles to be loaded onto the fabric surface, to improve the UV-absorption capacity of the textile materials.12,32,33 Among the nanometal oxide-loaded substrates, the TiO2–NP-loaded ones demonstrated the highest UPF value to protect human skin.
Moreover, the obvious increase in the antibacterial efficacy of the nanometal oxide-loaded substrates indicate their photocatalytic activity and ability to generate many reactive oxygen species (ROS), including hydroxyl radicals, superoxide anions and singlet oxygen, during photo-oxidation, which in turn can attack and destroy the pathogenic bacteria cells.26,27 The ZnO–NP-loaded substrates show the best antibacterial functionality, expressed as the ZI value, among the loaded nanometal oxides (Table 1).
The imparted antibacterial functionality against the nominated pathogens follows the decreasing order: G+ve > G−ve, probably due to the differences in their cell wall structure.28 The variation among the nanometal oxides in the imparted antibacterial functionality can be discussed in terms of differences between their photocatalytic activities, extent and location of loading, and compatibility with other ingredients, which in turn affect their ability to confer antibacterial functionality.
Based on the above mentioned results and discussion, the following simplified tentative mechanism demonstrates the interactions among the cellulose containing substrate (S-Cell˙OH), the finishing agent (), the amino functional silicone softener (
) and the nanometal oxide particles (MO–NPs).2,3,12,24,34
(a) Easy-care finish:
![]() | (1) |
(b) Easy care-finish:
![]() | (2) |
(c) Loading of MO–NPs onto the substrate:
![]() | (3) |
The extent of loading of the nominated MO–NPs onto and/or within the finish/fabric matrix via physical adhesion and physical entrapment, as well as via chemical interaction with potential reactive sites such as –OH and –COOH terminal groups of the substrate, and
groups of the reactive silicone softener within the finish/fabric matrix at acidic pH and at high temperature during the fixation step, significantly affects the imparted multifunctional properties.
![]() | (4) |
Nanometal oxide (25 g L−1) | Cotton | Cotton/polyester (65/35) | Cotton/polyester (50/50) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
G+ve | G−ve | G+ve | G−ve | G+ve | G−ve | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a Finishing bath constituents: Arkofix® NEC (50 g L−1); MgCl2·6H2O/citric acid (10/2 g L−1); UV-Sun® (25 g L−1); nanometal oxide (25 g L−1); nonionic wetting agent (2 g L−1); wet-pickup (80%); drying at 100 °C/3 min; curing at 150 °C/3 min.b Nitrogen content.c Wrinkle recovery angle (warp + weft).d Ultraviolet protection factor.e Zone of inhibition; G+ve: Gram-positive bacteria (S. aureus); G−ve: Gram negative bacteria (E. coli). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
None | 0.413 | 185 | 44 | 2.5 | 2.0 | 0.392 | 204 | 58 | 3.0 | 2.5 | 0.351 | 232 | 70 | 3.5 | 3.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZrO | 0.386 | 189 | 52 | 13 | 11 | 0.383 | 210 | 69 | 15 | 13 | 0.338 | 240 | 85 | 16 | 15 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZnO | 0.362 | 205 | 68 | 18 | 16 | 0.350 | 219 | 89 | 19 | 17.5 | 0.310 | 254 | 114 | 21 | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TiO2 | 0.374 | 210 | 96 | 15 | 14 | 0.368 | 232 | 114 | 17 | 15 | 0.330 | 265 | 130 | 18 | 17 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Untreated | — | 125 | 9 | — | — | — | 160 | 15 | — | — | — | 195 | 20 | — | — |
via chemical interactions among groups of the substrate,
groups of the reactant resin and
groups of the UV-absorber under the curing conditions, as well as via hydrogen bonding; (iii) the significant increase in the UV-protection functionality of the UV-Sun®-loaded substrates and the slight improvement in the antibacterial activity are attributed to the phenolic nature of the UV-absorber, as an oxalic acid dianilide derivative, and its ability to dissipate the UV-energy without radiation;5,35 (iv) the extent of the improvement in the fabric resiliency and functionality is governed by the type of substrate, as mentioned before, and follows the decreasing order: cotton/polyester (50/50) > cotton/polyester (65/35) > cotton (100%), keeping other parameters constant.
The results in Table 2 also demonstrate that: (i) the incorporation of any of the nominated nanomaterials, ZrO, ZnO or TiO2–NPs, as a UV-blocking agent in the reactant resin/organic UV-absorber finishing formulation brings about a slight decrease in % N, a reasonable improvement in fabric resiliency, excellent UV-protection properties (UPF: 50+), and a remarkable improvement in antibacterial functionality against both the G+ve and G−ve pathogens, irrespective of the used substrate; (ii) the remarkable improvement in the UV-protection functionality reflects the outstanding ability of the loaded nanomaterials to scatter/refract and shield the harmful UV-B rays, thereby upgrading the protection capacity of the multifinished substrates; (iii) the significant increase in the imparted antibacterial efficacy of the nanometal oxide-loaded substrates is attributed to their photocatalytic activity and ability to generate extremely reactive oxygen species (ROS) in the presence of light and water, which can attack, damage and finally destroy the harmful bacteria cells as follows:35–37
MO–NPs + hν → MO–NPs (ecb− + hvb+) | (5) |
e− + O2 → ˙O2− | (6) |
˙O2− + H2O(H+˙−OH) → HO2˙ + OH | (7) |
2HO2˙ → O2 + H2O2 | (8) |
H2O2 + ˙O2− → ˙OH + OH + O2 | (9) |
h+ + H2O(H+˙OH) → H+ + ˙OH | (10) |
Harmful bacteria + ROS → destroyed pathogenic bacteria cells | (11) |
On the other hand, the extent of the improvement in the imparted functionalities is governed by: (i) the type, particle size, amount, location, photocatalytic activity and shielding capacity of the incorporated MO–NPs; (ii) the synergistic effect of both the organic UV-absorber, UV-Sun®, and the MO–NP UV-blocker; (iii) the extent of the interactions among the nominated active ingredients and the cellulose-containing fabrics under the given thermofixation conditions.
Nanometal oxide (25 g L−1) | Cotton | Cotton/polyester (65/35) | Cotton/polyester (50/50) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb (%) | WRAc (W + F)° | UPFd | WRRe | ORRf | ZIg (mm) | Nb (%) | WRAc (W + F)° | UPFd | WRRe | ORRf | ZI (mm) | Nb (%) | WRAc (W + F)° | UPFd | WRRe | ORRf | ZIg (mm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
G+ve | G−ve | G+ve | G−ve | G+ve | G−ve | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a Finishing bath constituents: Arkofix® NEC (50 g L−1); MgCl2·6H2O/citric acid (10/2 g L−1); Oleophobol® CO (25 g L−1); nanometal oxide (25 g L−1); nonionic wetting agent (2 g L−1); wet-pickup (80%); drying at 100 °C/3 min; curing at 150 °C/3 min.b Nitrogen content.c Wrinkle recovery angle (warp + weft).d Ultraviolet protection factor.e Water repellent rate.f Oil repellent rate.g Zone of inhibition; G+ve: Gram-positive bacteria (S. aureus); G−ve: Gram negative bacteria (E. coli). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
None | 0.401 | 135 | 25 | 70 | 7 | 3.0 | 2.5 | 0.380 | 195 | 33 | 80 | 7 | 3.5 | 3 | 0.360 | 210 | 48 | 80 | 7 | 4 | 3.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZrO | 0.382 | 146 | 40 | 90 | 8 | 10 | 9 | 0.359 | 212 | 50 | 90 | 8 | 13 | 12 | 0.332 | 225 | 69 | 90 | 8 | 15 | 13 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZnO | 0.330 | 165 | 52 | 90 | 8 | 17 | 16 | 0.320 | 220 | 76 | 90 | 8 | 19 | 17 | 0.301 | 238 | 90 | 90 | 8 | 20 | 19 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TiO2 | 0.362 | 180 | 69 | 80 | 8 | 14 | 13 | 0.342 | 232 | 98 | 90 | 8 | 16 | 15 | 0.319 | 245 | 112 | 80 | 8 | 18 | 16 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Untreated | — | 125 | 9 | 0 | 0 | 0 | 0 | — | 160 | 15 | 0 | 0 | 0 | — | — | 195 | 20 | 0 | 0 | 0 | 0 |
On the other hand, incorporation of any of the nominated nanometal oxides into the conventional water/oil repellent finishing formulation results in a slight decrease in % N, along with a remarkable improvement in easy-care, UV-protection, water/oil repellency and antibacterial functionalities, regardless of the treated substrate and type of MO–NPs. The enhancement in the imparted functional properties of the treated substrates reflects the positive role of the utilized nanometal oxides in: (i) enhancing the extent of fixation, as well as the orientation of the fluorine-containing polymer onto the fabric surfaces, thereby improving the effectiveness and film forming properties; (ii) changing the surface topography and increasing the surface roughness, thereby leading to better hydrophobic effects than when the hydrophobic agent is applied alone, keeping other additives fixed. Furthermore, the presence of the MO–NPs fixed into the finish/fabric matrix, with their UV-shielding and photocatalytic properties, confers additional and better multifunctional properties to the treated cellulose-containing fabrics than those treated in the absence of MO–NPs.40,41 Additionally, the extent of the improvement in the multifunctional properties of the treated substrates is governed by fabric type, type of MO–NPs, extent of interaction and the fixation of active ingredients on the fabric surface, as well as the change in the surface morphology and surface tension of the nominated substrate in the absence and presence of the nanometal oxides.
4Ag + O2 + H2O → 4Ag+ + 4OH− | (12) |
![]() | (13) |
Nanometal oxide (25 g L−1) | Cotton | Cotton/polyester (65/35) | Cotton/polyester (50/50) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
G+ve | G−ve | G+ve | G−ve | G+ve | G−ve | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a Finishing bath constituents: Arkofix® NEC (50 g L−1); MgCl2·6H2O/citric acid (10/2 g L−1); HEIQ® Pure TF (30 g L−1); nanometal oxide (25 g L−1); nonionic wetting agent (2 g L−1). Wet-pickup (80%); drying at 100 °C/3 min; curing at 150 °C/3 min.b Nitrogen content.c Wrinkle recovery angle (warp + weft).d Ultraviolet protection factor.e Zone of inhibition; G+ve: Gram-positive bacteria (S. aureus); G−ve: Gram negative bacteria (E. coli). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
None | 0.416 | 136 | 25 | 15.0 | 13.0 | 0.401 | 185 | 40 | 17.0 | 16.0 | 0.385 | 205 | 52 | 18.5 | 17.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZrO | 0.394 | 145 | 39 | 17.0 | 16.0 | 0.371 | 203 | 50 | 19.5 | 18.0 | 0.358 | 220 | 69 | 22.0 | 21.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZnO | 0.346 | 158 | 53 | 21.0 | 19.0 | 0.330 | 215 | 70 | 23.0 | 22.0 | 0.313 | 230 | 97 | 24.5 | 23.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TiO2 | 0.365 | 170 | 69 | 18.5 | 17.0 | 0.348 | 226 | 85 | 21.0 | 19.5 | 0.336 | 238 | 112 | 23.0 | 22.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Untreated | — | 125 | 9 | 0.0 | 0.0 | — | 160 | 15 | 0.0 | 0.0 | — | 192 | 20 | 0.0 | 0.0 |
The results in Table 4 demonstrate also that inclusion of any of the nominated MO–NPs into the finishing formulation, along with other active ingredients, leads to much better functional properties, i.e. easy-care, UV-protection and antibacterial functionality, along with lower % N values, than those of the samples finished in the absence of the nanometal oxides, i.e. the control samples.
The noticeable improvement in the imparted functionalities of the treated substrates is a direct consequence of binding/embedding MO–NPs onto/into the finish/fabric matrix, which in turn enhances: (i) the catalytic effect of the used mixed catalyst; (ii) the extent of the interactions among the treated substrate active sites and the crosslinking and antimicrobial finishing agents used; (iii) the UV-blocking capability and antibacterial functionality, as discussed earlier. Additionally, the improvement in the evaluated functional properties reflects the synergetic effect of adding the nominated nanomaterials to the conventional finishing agents in one bath.
The obtained results also signify that the enhancement in the functional properties is directly affected by the characteristics of the substrate, such as its chemical nature, surface morphology, adsorption capacity, active groups and available binding sites. This enhancement is also related to the properties of the MO–NPs, such as their chemical structure, particle size, specific surface used, photocatalytic activity, and synergetic effect. Other factors include the mode of interaction, extent of fixation and loading of the active ingredients onto/within the finish/fabric matrix, and the degree of agglomeration of the NPs, which in turn controls the release of MO–NPs from the coated fabric surface.
The enhancement in the imparted functionalities using the nominated MO–NPs can be ranked in descending order as follows:
(i) Regarding easy-care and UV-blocking functions: TiO2–NPs > ZnO–NPs > ZrO–NPs > control ≫ untreated.
(ii) Regarding antibacterial function: ZnO–NPs > TiO2–NPs > ZrO–NPs > control ≫ untreated, keeping other parameters constant.
Nanometal oxide (25 g L−1) | Cotton | Cotton/polyester (65/35) | Cotton/polyester (50/50) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | Flammabilityf (S) | Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | Flammabilityf (S) | Nb (%) | WRAc (W + F)° | UPFd | ZIe (mm) | Flammabilityf (S) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
G+ve | G−ve | G+ve | G−ve | G+ve | G−ve | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a Finishing bath constituents: Arkofix® NEC (50 g L−1); MgCl2·6H2O/citric acid (10/2 g L−1); Flavon® CWF (200 g L−1); nanometal oxide (25 g L−1); nonionic wetting agent (2 g L−1); wet-pickup (80%); drying at 100 °C/3 min; curing at 150 °C/3 min.b Nitrogen content.c Wrinkle recovery angle (warp + weft).d Ultraviolet protection factor.e Zone of inhibition; G+ve: Gram-positive bacteria (S. aureus); G−ve: Gram negative bacteria (E. coli).f Flammability: relative ease of ignition and relative ability to sustain combustion (second). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
None | 2.012 | 170 | 20 | 1.5 | 1.0 | 11 | 1.843 | 203 | 36 | 2.5 | 2.0 | 19 | 1.508 | 216 | 51 | 3.0 | 2.5 | 30 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZrO | 1.841 | 179 | 33 | 13.5 | 12.0 | 16 | 1.780 | 212 | 54 | 15.0 | 13 | 25 | 1.381 | 223 | 69 | 17 | 16 | 35 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ZnO | 2.036 | 196 | 45 | 17.5 | 15.0 | 22 | 1.890 | 225 | 68 | 20 | 18 | 30 | 1.580 | 235 | 86 | 23 | 21 | 40 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TiO2 | 2.076 | 212 | 59 | 16.0 | 14.0 | 18 | 1.981 | 236 | 83 | 18 | 17.0 | 29 | 1.696 | 249 | 101 | 21 | 19 | 38 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Untreated | — | 125 | 9 | 0.0 | 0.0 | 4 | — | 160 | 15 | 0.0 | 0.0 | 8 | — | 195 | 22 | 0.0 | 0.0 | 13 |
Table 5 also shows that the addition of any of the nominated MO–NPs in the conventional flame-retardant finishing formulations is accompanied by a slight variation in % N, a reasonable improvement in WRA, and significant increases in UPF, antibacterial activity and burning time, regardless of the treated substrate. The enhancements in the imparted functionalities, gained through modifying the finishing formulation, reflect the positive impacts of the added MO–NPs on the surface morphology, location and distribution of crosslinks, creation of antibacterial active sites on the finish/fabric matrix and thermal stability and fire-retardant functionality of the treated substrates, thereby improving UV-protection, easy-care, antibacterial activity and increasing the flammability time, respectively.47 The enhancement in the flame retardant attributes of the treated substrates is governed by the type of immobilized MO–NPs, and their thermal stability, synergetic effects, ability to act as a barrier to heat and mass transfer, capability to change the degradation pathway of the textile polymer and ability to hinder the mobility of textile polymer chains and/or to absorb the generated active species,48 keeping other parameters fixed. The degree of fixation of both the phosphorous sulfur and nitrogen components to the finish/fabric matrix cannot be rolled out. Moreover, the results in Table 5 demonstrate that the enhancement in flame-retardant functionality as a function of the added MO–NPs can be ranked as: ZnO–NPs > TiO2–NPs > ZrO–NPs > control ≫ untreated, keeping the type of substrate fixed. Additionally, the change in the evaluated functional property values upon using the nominated MO–NPs is governed by their type, photocatalytic activity, thermal stability and compatibility with other ingredients in the conventional finishing formulation, as mentioned before.
The obtained results demonstrate that the incorporation of the nominated MO–NPs into an easy-care/softener finishing formulation is accompanied by an enhancement in fabric resiliency and surface softness, along with a noticeable improvement in UV-protection and antibacterial functionalities, regardless of the type of MO–NPs or treated substrates. Inclusion of the nominated MO–NPs into UV-protection finish formulation brings about a remarkable improvement in the UV-protection functionality, along with a significant improvement in the antibacterial efficacy and a reasonable increase in fabric resiliency, irrespective of the used MO–NPs and the finished substrate. We have also shown that the addition of the nominated MO–NPs into a water/oil repellent finishing formulation results in significant improvements in UPF, ERR and ORR values, along with a reasonable improvement in fabric resiliency, and the extent of improvement is determined by the type of MO–NPs and the kind of substrate. Coating the substrates with the antibacterial finish in the presence of the nanometal oxides also results in a remarkable improvement in the antibacterial activity according to the following order: ZnO–NPs > TiO2–NPs > ZrO–NPs > control ≫ untreated, along with an enhancement in the UPF values as follows: TiO2–NPs > ZnO–NPs > ZrO–NPs > control ≫ untreated, keeping the other parameters constant. Furthermore, the addition of any of the nominated MO–NPs to the conventional flame retardant finishing formulation results in a significant increase in burning time, UPF and antibacterial activity along with a reasonable increase in fabric resiliency. The enhancement of the flame retardant properties as a function of the type of MO–NPs can be ranked as: ZnO–NPs > TiO2–NPs > ZrO–NPs > control ≫ untreated. Finally, this very simple and easily scaled-up single step process can be applied to achieve multifunctional textile products with outstanding performance and protective properties.
This journal is © The Royal Society of Chemistry 2017 |