DOI:
10.1039/C5RA02888D
(Paper)
RSC Adv., 2015,
5, 29766-29773
Direct trifluoromethylation of imidazoheterocycles in a recyclable medium at room temperature†
Received
14th February 2015
, Accepted 20th March 2015
First published on 20th March 2015
Abstract
Regioselective C–H trifluoromethylation of imidazoheterocycles with Langlois' reagent in a recyclable mixed medium of 1-butyl-3-methylimidazoliumtetrafluoroborate ([Bmim]BF4) and water at room temperature has been developed. In the presence of catalytic cupric acetate and 2-methyl-2-(methylperoxy)propane (TBHP), this green strategy tolerates a wide range of functional groups to afford diverse trifluoromethylated imidazoheterocycles in moderate to good yields.
Introduction
Imidazoheterocycles are privileged scaffolds with diverse bioactivity,1 which have been used as SIRT1 activator,2 RSK2 inhibitors,3 anticancer agents,4 and antiviral agents,5 and in the treatment of cystic fibrosis.6 Several commercially available drugs, such as alpidem, olprinone, necopidem, zolimidine, and saripidem, have been developed by the modification of imidazoheterocyclic skeletons.7 Thus significant progress has been made in the functionalization of imidazoheterocycles.8,9 The C–H bond functionalization strategy is an ideal route to the preparation of diverse imidazoheterocycles as it is a straightforward, atom economical, and synthetic step economical method. C–H sulfenylation,10 arylation,11 alkenylation,12 and carbonylation13 have been employed for the functionalization of imidazoheterocycles. However, little attention has been paid to the C–H trifluoromethylation of imidazoheterocycles.14
The presence of a trifluoromethyl group commonly strengthens the bioactivity of drug candidates,15 which promotes us to focus on the C–H trifluoromethylation of imidazoheterocycles. Among the trifluoromethylating reagents (including Umemoto's reagent,16 Ruppert's reagent,17 Togni's reagent,18 and Langlois' reagent19), Langlois' reagent is a preferable trifluoromethylating reagent as it is stable, inexpensive, and environmental friendly, which has been extensively used in the preparation of diverse trifluoromethylated compounds.19,20 Baran group20b–d,20g has made a great contribution to the field of the trifluoromethylation of heterocycles using Langlois' reagent. Despite great success has been achieved, green strategy for the trifluoromethylation remains scarce. The first example for C–H trifluoromethylation using water as a medium was recently reported by Lipshutz group.20k Despite the C–H trifluoromethylation of imidazoheterocycles was just carried out in DMSO using silver nitrate as catalyst,14b the development of C–H trifluoromethylation of imidazoheterocycles in an environmental friendly medium is highly desirable, which meets the guiding principles of green chemistry.21 A challenge we are facing is the insolubility of imidazoheterocycles in water at room temperature. We hypothesized that the addition of an ionic liquid to the water may figure out the insolubility problem of imidazoheterocycles; additionally, ionic liquids are commonly stable, non-volatile, and recyclable, which are widely used as green mediums in various reactions.22 As a part of our continuing interest in the C–H functionalization of imidazoheterocycles,10h we report a method for regioselective C–H trifluoromethylation of imidazoheterocycles in a mixed medium of [Bmim]BF4 and water at room temperature (Scheme 1).
 |
| Scheme 1 The trifluoromethylation of imidazoheterocycles. | |
Results and discussion
Initially, we used the trifluoromethylation of 6-phenylimidazo[2,1-b]thiazole 1a with sodium trifluoromethanesulfonate as the model reaction (Table 1). Several organic solvents were investigated in the presence of 5 mol% of Cu(OAc)2 and 3 equivalents of TBHP at 25 °C: DMSO was preferable for the trifluoromethylation to afford the product 2a in 75% (entry 4); whereas other solvents such as CH3CN, CH3NO2, and DMF gave low yields (entries 1–3). The trifluoromethylation of imidazoheterocycles was examined in water as a green solvent.20k Unfortunately, the insolubility of 1a in water leads to the failure of the trifluoromethylation (entry 5). The commercially available [Bmim]BF4 ionic liquid is a suitable reaction medium for the trifluoromethylation at room temperature, giving product 2a in 62% yield (entry 6). To our delight, the yield of product 2a was improved to 73% in the mixed medium of [Bmim]BF4 and H2O (v/v = 1
:
1) (entry 7). Increasing the proportion of water in the mixed medium decreased the yield of 2a to 46% (entry 8). The reaction of 1a at 40 °C appeared to have no change in the yield of 2a (entry 9); whereas the reaction at 80 °C produced multi-ditrifluoromethylated products, leading to lower yield of 2a (entry 10). Other copper catalysts, including CuCl, CuCl2·2H2O, Cu(OTf)2, and Cu(TFA)2, were then evaluated in [Bmim]BF4/H2O at 25 °C, all of these gave lower yields than that obtained with Cu(OAc)2 (entries 11–14). The results show that using 2 equivalents of TBHP decreased the yield of 2a to 61% (entry 15), and no product was obtained in the absence of TBHP (entry 16). It was demonstrated that only a small amount of 2a was obtained in the absence of Cu(OAc)2 (entry 17). These suggest that both TBHP and Cu(OAc)2 are key to this transformation. The addition of 3 equivalents of 2,2,6,6-tetramethylpiperdin-1-oxyl (TEMPO) led to the failure of this reaction, suggesting that this reaction may undergo a radical pathway (entry 18).
Table 1 Screening of optimal conditionsa
With this optimized reaction conditions in hand, the scope of imidazothiazoles was investigated (Table 2). 6-Arylimidazo[2,1-b]thiazoles containing a methyl, methoxyl, chloro, bromo, fluoro, or cyano group on the benzene ring were well tolerated under the standard conditions. For example, both methyl and methoxyl substituted substrates underwent the reaction smoothly to give the corresponding products 2b and 2c in 74% and 70% yields, respectively. The halo-substituted substrates have good reactivity in the trifluoromethylation giving products 2d–2f in good yields. These products are synthetically useful for further modification by coupling reaction at the halo groups. Cyano group also favoured the reaction in [Bmim]BF4 to give product 2g in 72% yield. Difluoro-substituted substrate also underwent the reaction successfully to afford product 2h in 45% yield. Different substituents on the thiazole ring were also investigated (products 2i–2k). It is noteworthy that the substrate bearing an ester group was well tolerated in [Bmim]BF4 to give product 2j in 65% yield, which enables a further chemical transformation at the ester group. To our delight, benzo[d]imidazo[2,1-b]thiazole exhibits good reactivity under the standard conditions, affording product 2k in 81% yield.
Table 2 The Scope of trifluoromethylation of imidazoheterocyclesa
To further demonstrate the versatility of this trifluoromethylation strategy, the scope of imidazo[1,2-a]pyridines was investigated (products 2l–2w). 2-Arylimidazo[1,2-a]pyridines with a methyl, methoxyl, chloro, bromo, or phenyl group on the benzene ring were well tolerated under the standard conditions, giving the corresponding product in moderate yield (products 2l–2q). A 51% yield of 2r was also obtained despite the hindrance of the naphthyl group. The results show that substrates with a halo group on the pyridine ring are suitable for this transformation (products 2t–2v). For example, a 75% yield of product 2v was obtained in the reaction of 8-bromo-2-phenylimidazo[1,2-a]pyridine, to which various functional groups can be introduced by the disconnection of C–Br bond. The reaction of 2-ethylimidazo[1,2-a]pyridine was also carried out under the standard conditions, albeit with a low yield of product 2w that cannot be obtained in the previous work.14b Finally, 2-phenylimidazo[1,2-a]pyrimidine was reacted with sodium trifluoromethanesulfonate to give product 2x in 65% yield.
Next, we focused on the trifluoromethylation of imidazoles to expand the scope of application of this methodology (Table 3). The results showed that the reactions of 1H-imidazole and methyl-substituted 1H-imidazoles did not proceed under the standard conditions. To our delight, a small amount of product 4d was observed in the trifluoromethylation of 1-phenyl-1H-imidazole. Encouraged by this result, other phenyl-substituted imidazoles such as 2-phenyl-1H-imidazole and 4-phenyl-1H-imidazole were reacted with sodium trifluoromethanesulfonate, both reactions proceeded smoothly, giving products 4e and 4f in 42% and 51% yields, respectively. Based on these results, we can conclude that the phenyl substituent is essential to the trifluoromethylation of imidazoles. The presence of a phenyl group as a conjugated group in substrates 3e and 3f can stabilize the imidazole ring, which may facilitate the trifluoromethylation. Whereas the phenyl group on the nitrogen has weaker conjugation effect on the imidazole ring, leading to the bad result. Substrates 3a–c did not work at all under the standard conditions may result from the absence of a conjugated group.
Table 3 The scope of trifluoromethylation of imidazolesa
To test their potential in large scale synthesis, the reaction of 1a was conducted at 2.0 g (10 mmol) scale, and it performed well under the standard conditions to give 2a in 70% yield (Table 4). In the treatment of the reaction mixture with Et2O, three-phase (from top to bottom is ether, water, and [Bmim]BF4) can be observed. Thus product 2a is readily isolated from the reaction medium, and cupric acetate was mainly distributed in [Bmim]BF4 and water phases for the reaction cycle (Table 4). The results show that the 1st–3rd recycles appear to have no obvious change in term of yield of 2a (entries 1–3); whereas the yield was reduced to 53% and 48% in the 4th and 5th recycles, respectively (entries 4 and 5). It is noteworthy that Et2O used for extraction can be easily recovered for next extraction. These results suggest that the newly established strategy for the trifluoromethylation of imidazoheterocycles has potential for industrial applications.
Table 4 Recycling of the reaction mediuma
Entry |
Cycle |
Yield (%) |
Reaction conditions: 1a (10 mmol), CF3SO2Na (20 mmol, 2 equiv.), [Cu] (5 mol%), TBHP (3 equiv., 5–6 M solution in decane), [Bmim]BF4/H2O (v/v = 1 : 1, 30 mL), at 25 °C, reaction for 24 h. Extracted with Et2O; [Bmim]BF4/H2O medium was recycled for next reaction. |
1 |
1b |
70 |
2 |
2b |
70 |
3 |
3b |
65 |
4 |
4b |
53 |
5 |
5 |
48 |
According to the present results and previous reports,14b,19,20 a possible mechanism is proposed in Scheme 2. The copper catalysts may facilitate the generation of t-butoxyl radical from TBHP, the t-butoxyl radical reacts with sodium trifluoromethanesulfonate to afford a trifluoromethyl radical in situ. The trifluoromethyl radical then reacts with compound 1 to produce intermediate A. The intermediate A is oxidized to a carbonication B, followed by an oxidative dehydrogenation process to afford target product 2.
 |
| Scheme 2 A possible mechanism. | |
Conclusions
In summary, the mixture of [Bmim]BF4 and H2O has been found to be an effective reaction medium for the trifluoromethylation of imidazoheterocycles with Langlois' reagent at room temperature. In the presence of catalytic cupric acetate and TBHP, a wide range of functional groups were well tolerated to afford diverse trifluoromethylated imidazoheterocycles in moderate to good yields. Moreover, several phenyl-substituted 1H-imidazoles are also suitable for the trifluoromethylation under the standard conditions. This strategy has several advantages: (1) using green and recyclable reaction medium, (2) room temperature reactions, and (3) good toleration with various functional groups.
Experimental section
General remarks
1H and 13C NMR spectra were measured on a Bruker Avance-III 500 instrument (500 MHz for 1H, 125 MHz for 13C NMR spectroscopy) using CDCl3 or DMSO-d6 as the solvent. Referenced to internal TMS (0.0 ppm) as the standard. Mass spectra were measured on a Shimadzu GC-MS-QP2010 Plus spectrometer (EI). HRMS (ESI) analysis was measured on a Bruker micrOTOF-Q II instrument. IR analysis was measured on Nicolet IS10 spectrometer (ATR).
General procedure for C–H trifluoromethylation of imidazoheterocycles
A 15 mL tube with a Teflon cap, equipped with a magnetic stirring bar, was charged with substrate 1a (0.20 mmol), CF3SO2Na (0.40 mmol, 2.0 equiv.), Cu(OAc)2 (5 mol%), TBHP (0.60 mmol, 3.0 equiv.), and [Bmim]BF4/H2O (v/v = 1
:
1, 2 mL) was then added sequentially. The tube was then capped and stirred at 25 °C for 24 h. The product was extracted by Et2O (3 × 10 mL), the ether phase was collected and dried (Na2SO4), filtered through a Celite pad, and washed with Et2O. The filtrate was concentrated in vacuo (Et2O was recovered for next extraction), and the resulting residue was purified by column chromatography (hexane–EtOAc) to afford product 2a as a light yellow solid; yield: 39.1 mg (73%).
6-Phenyl-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2a). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 4.5 Hz, 1H), 7.46–7.39 (m, 3H), 6.98 (d, J = 4.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 151.6, 149.3, 132.8, 129.0, 128.9, 128.5, 121.8 (q, JC–F = 265.3 Hz), 119.1 (q, JC–F = 2.8 Hz), 114.4, 112.0 (q, JC–F = 41.6 Hz). IR (ATR, cm−1): 1576, 1433, 1335, 1187, 1132, 785. LRMS (EI, 70 eV) m/z (%): 268 (100), 249 (11), 229 (6), 134 (6), 58 (7). HRMS (ESI) for C12H8F3N2S (M + H)+: calcd 269.0355, found 269.0350.
6-(p-Tolyl)-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2b). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.60 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 4.5 Hz, 1H), 7.25 (d, J = 7.9 Hz, 2H), 6.94 (d, J = 4.5 Hz, 1H), 2.40 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 151.4, 149.2, 138.8, 129.8, 129.1, 128.6, 121.7 (q, JC–F = 265.6 Hz), 119.0 (q, JC–F = 2.8 Hz), 114.0, 111.5 (q, JC–F = 40.6 Hz), 21.3. IR (ATR, cm−1): 2921, 1528, 1327, 1169, 1090, 832. LRMS (EI, 70 eV) m/z (%): 282 (100), 207 (14), 133 (8), 116 (7), 115 (8). HRMS (ESI) for C13H10F3N2S (M + H)+: calcd 283.0511, found 283.0520.
6-(4-Methoxyphenyl)-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2c). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 4.0 Hz, 1H), 6.98–6.96 (m, 3H), 3.85 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 160.2, 151.4, 149.0 (d, JC–F = 2.4 Hz), 130.1, 125.2, 121.8 (q, JC–F = 265.3 Hz), 119.0 (q, JC–F = 2.8 Hz), 114.0, 113.9, 111.2 (q, JC–F = 40.5 Hz), 55.4. IR (ATR, cm−1): 3059, 2966, 1428, 1353, 1275, 1182, 865. LRMS (EI, 70 eV) m/z (%): 298 (100), 283 (3), 281 (7), 73 (8). HRMS (ESI) for C13H9F3N2NaOS (M + Na)+: calcd 321.0280, found 321.0301.
6-(4-Chlorophenyl)-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2d). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.66–7.60 (m, 3H), 7.42 (d, J = 6.5 Hz, 2H), 7.05–7.02 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 151.6, 147.9, 135.0, 131.1, 130.1, 128.7, 121.6 (q, JC–F = 265.5 Hz), 119.0, 114.6, 111.9 (q, JC–F = 45.3 Hz). IR (ATR, cm−1): 1538, 1453, 1385, 1126, 1075, 986. LRMS (EI, 70 eV) m/z (%): 302 (100), 283 (9), 267 (6), 207 (11), 58 (8). HRMS (ESI) for C12H7ClF3N2S (M + H)+: calcd 302.9965, found 302.9960.
6-(4-Bromophenyl)-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2e). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.59–7.58 (m, 5H), 7.01 (d, J = 4.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 151.6, 147.9, 131.6, 131.6, 130.4, 123.3, 121.5 (q, JC–F = 265.3 Hz), 119.0 (q, JC–F = 2.8 Hz), 114.6, 111.9 (q, JC–F = 42.3 Hz). IR (ATR, cm−1): 1528, 1437, 1218, 1182, 1120, 973. LRMS (EI, 70 eV) m/z (%): 348 (100), 346 (93), 268 (6), 169 (9). HRMS (ESI) for C12H7BrF3N2S (M + H)+: calcd 346.9460, found 346.9456.
6-(4-Fluorophenyl)-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2f). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.69 (dd, J = 8.4, 5.3 Hz, 2H), 7.59 (d, J = 4.5 Hz, 1H), 7.13 (t, J = 8.7 Hz, 2H), 7.00 (d, J = 4.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 163.2 (d, JC–F = 247.1 Hz), 151.5, 148.1, 130.7 (d, JC–F = 8.4 Hz), 128.78 (d, JC–F = 3.3 Hz), 121.6 (q, JC–F = 265.4 Hz), 119.0 (q, JC–F = 2.8 Hz), 115.4 (d, JC–F = 21.6 Hz), 114.4, 111.7 (q, JC–F = 41.4 Hz). IR (ATR, cm−1): 1487, 1243, 1187, 1169, 819, 765. LRMS (EI, 70 eV) m/z (%): 286 (100), 265 (7), 133 (6), 121 (7), 58 (6). HRMS (ESI) for C12H7F4N2S (M + H)+: calcd 287.0261, found 287.0276.
4-(5-(Trifluoromethyl)imidazo[2,1-b]thiazol-6-yl)benzonitrile (2g). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.84 (d, J = 7.5 Hz, 2H), 7.74 (d, J = 7.5 Hz, 2H), 7.68–7.64 (m, 1H), 7.14–7.10 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 152.0, 146.7, 137.0, 132.2, 129.3, 121.4 (q, JC–F = 265.6 Hz), 119.0 (q, JC–F = 2.8 Hz), 118.70, 115.4, 112.7 (q, JC–F = 41.0 Hz), 112.4. IR (ATR, cm−1): 2226, 2098, 1517, 1480, 1175, 1149, 1082, 986, 971. LRMS (EI, 70 eV) m/z (%): 293 (100), 281 (17), 243 (7), 73 (7), 58 (7). HRMS (ESI) for C13H7F3N3S (M + H)+: calcd 294.0307, found 294.0309.
6-(3,4-Difluorophenyl)-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2h). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.61–7.46 (m, 3H), 7.26–7.04 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 151.5, 150.8 (dd, JC–F = 242.4, 11.5 Hz), 150.2 (dd, JC–F = 244.9, 11.7 Hz), 146.8, 129.5, 125.0, 121.4 (q, JC–F = 265.5 Hz), 118.9, 117.8 (d, JC–F = 18.5 Hz), 117.3 (d, JC–F = 17.4 Hz), 114.7, 112.0 (q, JC–F = 43.4 Hz). IR (ATR, cm−1): 3037, 1518, 1398, 1178, 1150, 1090, 969. LRMS (EI, 70 eV) m/z (%): 304 (100), 285 (17), 265 (7), 187 (9), 58 (8). HRMS (ESI) for C12H6F5N2S (M + H)+: calcd 305.0166, found 305.0186.
2-Methyl-6-phenyl-5-(trifluoromethyl)imidazo[2,1-b]thiazole (2i). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.69 (d, J = 7.4 Hz, 2H), 7.45–7.39 (m, 3H), 7.30 (s, 1H), 2.46 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 150.9, 147.9, 132.8, 128.8, 128.7, 128.4, 128.4, 121.7 (q, JC–F = 265.5 Hz), 115.5 (q, JC–F = 2.8 Hz), 111.5 (q, JC–F = 40.4 Hz), 14.1. IR (ATR, cm−1): 2931, 1435, 1352, 1183, 1150, 837. LRMS (EI, 70 eV) m/z (%): 282 (100), 263 (7), 261 (7), 103 (5), 72 (3). HRMS (ESI) for C13H10F3N2S (M + H)+: calcd 283.0511, found 283.0508.
Ethyl-6-phenyl-5-(trifluoromethyl)imidazo[2,1-b]thiazole-2-carboxylate (2j). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.19 (s, 1H), 7.64 (d, J = 6.5 Hz, 2H), 7.38–7.37 (m, 3H), 4.35 (q, J = 7.0 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 159.5, 151.0, 149.2, 130.8, 128.2, 127.7, 127.4, 123.3, 122.7, 120.2 (q, JC–F = 265.7 Hz), 110.9 (q, JC–F = 40.4 Hz), 61.4, 13.1. IR (ATR, cm−1): 1735, 1600, 1563, 1387, 1162, 1139, 1089, 975. LRMS (EI, 70 eV) m/z (%): 340 (100), 312 (62), 207 (21), 267 (8), 73 (11). HRMS (ESI) for C15H12F3N2O2S (M + H)+: calcd 341.0566, found 341.0559.
2-Phenyl-3-(trifluoromethyl)benzo[d]imidazo[2,1-b]thiazole (2k)14a. Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.79 (d, J = 8.0 Hz, 1H), 7.59–7.54 (m, 3H), 7.37–7.31 (m, 4H), 7.25 (t, J = 7.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 149.9, 149.1, 131.9, 131.1, 129.1, 128.6, 127.9, 127.1, 125.8, 124.6, 123.3, 120.5 (q, JC–F = 265.3 Hz), 113.7 (q, JC–F = 4.6 Hz), 111.5 (q, JC–F = 40.5 Hz). IR (ATR, cm−1): 3072, 1551, 1478, 1296, 1178, 1157, 1093, 976, 773. LRMS (EI, 70 eV) m/z (%): 318 (100), 297 (10), 159 (11), 108 (10), 69 (10).
2-Phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2l)14a. Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.17 (d, J = 3.0 Hz, 1H), 7.61–7.60 (m, 3H), 7.35–7.22 (m, 4H), 6.82 (t, J = 6.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 147.0, 145.1, 131.9, 128.5, 127.9, 127.1, 125.9, 124.5, 121.9 (q, JC–F = 265.2 Hz), 117.0, 112.9, 108.5 (q, JC–F = 38.4 Hz). IR (ATR, cm−1): 3059, 1580, 1510, 1405, 1385, 1198, 1116, 1062, 995, 781. LRMS (EI, 70 eV) m/z (%): 262 (100), 241 (15), 212 (10), 192 (5), 78 (13).
2-(p-Tolyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2m). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 7.2 Hz 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.61 (d, J = 6.5 Hz, 2H), 7.35 (s, 1H), 7.27 (d, J = 7.0 Hz, 2H), 6.94 (d, J = 6.5 Hz, 1H), 2.41 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 148.2, 146.2, 139.0, 130.0, 129.5, 129.0, 126.9, 125.5, 122.1 (q, JC–F = 265.5 Hz), 118.0, 113.9, 109.4 (q, JC–F = 40.6 Hz), 21.4. IR (ATR, cm−1): 3045, 2973, 1539, 1462, 1327, 1251, 1152, 1073, 983, 754. LRMS (EI, 70 eV) m/z (%): 276 (100), 255 (5), 205 (7), 103 (5), 78 (11). HRMS (ESI) for C15H12F3N2 (M + H)+: calcd 277.0947, found 277.0960.
2-(3-Methoxyphenyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2n). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 4.5 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H), 7.39–7.36 (m, 2H), 7.28–7.25 (m, 2H), 7.00 (d, J = 6.0 Hz, 2H), 3.87 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 159.4, 147.9, 146.1, 134.2, 129.3, 127.1, 125.6, 122.1, 121.9 (q, JC–F = 265.4 Hz), 118.1, 115.1, 114.7, 114.1, 109.7 (q, JC–F = 36.0 Hz), 55.4. IR (ATR, cm−1): 3021, 2962, 1538, 1458, 1397, 1263, 1082, 767. LRMS (EI, 70 eV) m/z (%): 292 (100), 273 (10), 241 (10), 78 (3). HRMS (ESI) for C15H12F3N2O (M + H)+: calcd 293.0896, found 293.0898.
2-(4-Chlorophenyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2o). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 6.5 Hz, 1H), 7.72 (d, J = 8.9 Hz, 1H), 7.64 (d, J = 7.5 Hz, 2H), 7.44 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.00 (t, J = 6.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 146.7, 146.0, 135.0, 131.3, 130.8, 128.3, 127.1, 125.4 (q, JC–F = 3.3 Hz), 121.7 (q, JC–F = 265.6 Hz), 117.9, 114.0, 109.5 (q, JC–F = 39.0 Hz). IR (ATR, cm−1): 1567, 1436, 1332, 1189, 1109, 1116, 752. LRMS (EI, 70 eV) m/z (%): 296 (100), 277 (9), 241 (6), 138 (7), 51 (14). HRMS (ESI) for C14H9ClF3N2 (M + H)+: calcd 297.0401, found 297.0414.
2-(4-Bromophenyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2p). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 7.0 Hz, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.60–7.57 (m, 4H), 7.40 (t, J = 8.0 Hz, 1H), 7.00 (t, J = 6.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 146.9, 146.2, 131.9, 131.5, 131.2, 127.3, 125.6 (q, JC–F = 3.5 Hz), 123.5, 121.9 (q, JC–F = 265.3 Hz), 118.1, 114.2, 109.7 (q, JC–F = 39.4 Hz). IR (ATR, cm−1): 1530, 1398, 1181, 1139, 726, 628. LRMS (EI, 70 eV) m/z (%): 340 (100), 342 (97), 261 (30), 207 (21), 73 (11). HRMS (ESI) for C14H9BrF3N2 (M + H)+: calcd 340.9896, found 340.9891.
2-([1,1′-Biphenyl]-4-yl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2q). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.31 (d, J = 6.5 Hz, 1H), 7.79 (d, J = 7.5 Hz, 2H), 7.76–7.64 (m, 5H), 7.46 (t, J = 7.3 Hz, 2H), 7.36 (d, J = 6.5 Hz, 2H), 6.97 (t, J = 7.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 147.8, 146.2, 141.8, 140.6, 131.8, 130.0, 128.8, 127.6, 127.2, 127.0, 126.9, 125.4 (q, JC–F = 3.6 Hz), 122.0 (q, JC–F = 265.5 Hz), 118.0, 114.0, 109.6 (q, JC–F = 39.3 Hz). IR (ATR, cm−1): 1506, 1421, 1368, 1261, 1017, 729. LRMS (EI, 70 eV) m/z (%): 338 (100), 317 (5), 281 (5), 169 (4), 78 (7). HRMS (ESI) for C20H13F3N2Na (M + Na)+: calcd 361.0923, found 361.0940.
2-(Naphthalen-2-yl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2r). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 7.0 Hz, 1H), 8.21 (s, 1H), 7.93–7.81 (m, 4H), 7.75 (d, J = 9.0 Hz, 1H), 7.51–7.50 (m, 2H), 7.36–7.33 (m, 1H), 6.94 (t, J = 6.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 148.0, 146.2, 133.5, 133.1, 130.3, 129.3, 128.6, 127.8, 127.7, 127.0, 126.7, 126.3, 125.5 (q, JC–F = 3.5 Hz), 122.0 (q, JC–F = 265.4 Hz), 118.1, 114.0, 109.8 (q, JC–F = 39.1 Hz). IR (ATR, cm−1): 3019, 1526, 1366, 1157, 1075, 971. LRMS (EI, 70 eV) m/z (%): 312 (100), 291 (13), 273 (8), 156 (5), 73 (5). HRMS (ESI) for C18H12F3N2 (M + H)+: calcd 313.0947, found 313.0962.
6-Methyl-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2s). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.08 (s, 1H), 7.69 (d, J = 6.0 Hz, 2H), 7.62 (d, J = 9.0 Hz, 1H), 7.45 (d, J = 7.5 Hz, 3H), 7.22 (d, J = 9.0 Hz, 1H), 2.38 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 147.9, 145.3, 133.2, 130.1, 129.6, 128.9, 128.2, 123.9, 123.2 (q, JC–F = 3.5 Hz), 122.1 (q, JC–F = 265.6 Hz), 117.3, 109.2 (q, JC–F = 32.9 Hz), 18.4. IR (ATR, cm−1): 2931, 1540, 1259, 1165, 1098, 825, 796. LRMS (EI, 70 eV) m/z (%): 276 (100), 237 (4), 226 (8), 128 (4), 92 (10). HRMS (ESI) for C15H12F3N2 (M + H)+: calcd 277.0947, found 277.0964.
6-Fluoro-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2t). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.26 (s, 1H), 7.78–7.62 (m, 3H), 7.46–7.45 (m, 3H), 7.33–7.29 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 153.8 (d, JC–F = 238.4 Hz), 149.1, 143.8, 132.6, 129.5, 129.2, 128.3, 121.7 (q, JC–F = 265.5 Hz), 119.1 (d, JC–F = 25.2 Hz), 118.6 (d, JC–F = 8.9 Hz), 112.8 (dq, JC–F = 42.5, 3.75 Hz), 111.0 (q, JC–F = 39.4 Hz). IR (ATR, cm−1): 1510, 1483, 1386, 1265, 1173, 916. LRMS (EI, 70 eV) m/z (%): 280 (100), 261 (10), 259 (17), 210 (6), 96 (17). HRMS (ESI) for C14H9F4N2 (M + H)+: calcd 281.0696, found 281.0709.
8-Chloro-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2u). Light green solid. 1H NMR (500 MHz, CDCl3) δ 8.16 (d, J = 7.0 Hz, 1H), 7.62 (d, J = 6.0 Hz, 2H), 7.42–7.37 (m, 4H), 6.85 (t, J = 7.1 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 147.5, 142.6, 131.4, 128.7, 128.2, 127.2, 124.9, 123.1 (q, JC–F = 3.6 Hz), 123.0, 120.5 (q, JC–F = 265.4 Hz), 112.6, 110.2 (q, JC–F = 39.6 Hz). IR (ATR, cm−1): 3029, 1550, 1376, 1187, 1117, 1090, 783, 687. LRMS (EI, 70 eV) m/z (%): 296 (100), 298 (33), 275 (12), 138 (8), 76 (10). HRMS (ESI) for C14H8ClF3N2Na (M + Na)+: calcd 319.0220, found 319.0227.
8-Bromo-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2v). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.19 (d, J = 7.0 Hz, 1H), 7.66–7.58 (m, 2H), 7.58–7.52 (m, 1H), 7.40–7.32 (m, 3H), 6.77 (t, J = 7.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 147.7, 143.3, 131.6, 128.9, 128.5, 128.3, 127.3, 123.9, 120.7 (q, JC–F = 265.3 Hz), 113.1, 111.4, 110.5 (q, JC–F = 39.6 Hz). IR (ATR, cm−1): 1538, 1472, 1335, 1156, 980, 712. LRMS (EI, 70 eV) m/z (%): 340 (100), 342 (98), 321 (12), 170 (9), 158 (10). HRMS (ESI) for C14H8BrF3N2Na (M + Na)+: calcd 362.9715, found 362.9738.
2-Ethyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (2w). Brown oil. 1H NMR (500 MHz, CDCl3) δ 8.21 (d, J = 5.5 Hz, 1H), 7.65 (d, J = 9.0 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 2.94 (q, J = 7.0 Hz, 2H), 1.36 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 147.8, 135.9, 129.8, 126.3, 125.2, 120.7 (q, JC–F = 265.5 Hz), 117.4, 113.4, 31.1, 13.7. IR (ATR, cm−1): 2931, 1512, 1255, 1221, 1186, 1122, 726. LRMS (EI, 70 eV) m/z (%): 214 (51), 213 (100), 195 (7), 145 (6), 78 (22). HRMS (ESI) for C10H10F3N2 (M + H)+: calcd 215.0791, found 215.0795.
2-Phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyrimidine (2x). Light yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.74–8.64 (m, 2H), 7.78 (d, J = 4.0 Hz, 2H), 7.59–7.39 (m, 3H), 7.13–7.10 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 152.2, 149.5, 148.6, 133.5, 132.1, 129.6, 129.5, 128.3, 121.5 (q, JC–F = 265.5 Hz), 110.2, 108.1 (q, JC–F = 39.6 Hz). IR (ATR, cm−1): 1636, 1510, 1483, 1381, 1215, 1172, 1086, 980, 712. LRMS (EI, 70 eV) m/z (%): 263 (100), 242 (19), 79 (2), 73 (11). HRMS (ESI) for C13H8F3N3Na (M + Na)+: calcd 286.0563, found 286.0562.
2-Phenyl-4-(trifluoromethyl)-1H-imidazole (4e)23. White solid. 1H NMR (500 MHz, acetone) δ 12.19 (brs, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.61 (s, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 7.5 Hz, 1H). 13C NMR (125 MHz, acetone) δ 148.7, 130.7, 130.1, 129.7, 127.0, 126.5, 123.4 (q, JC–F = 265.3 Hz), 118.9. IR (ATR, cm−1): 2932, 2306, 1578, 1556, 1359, 1172, 1148, 975. LRMS (EI, 70 eV) m/z (%): 212 (100), 192 (18), 165 (49), 116 (36), 77 (23).
5-Phenyl-4-(trifluoromethyl)-1H-imidazole (4f)23. Light yellow solid. 1H NMR (500 MHz, DMSO) δ 13.22 (brs, 1H), 7.97 (s, 1H), 7.61–7.41 (m, 5H). 13C NMR (125 MHz, DMSO) δ 136.5, 131.4, 128.8, 128.6, 128.4, 122.6 (q, JC–F = 265.5 Hz). IR (ATR, cm−1): 2928, 1567, 1263, 1178, 1152, 798. LRMS (EI, 70 eV) m/z (%): 212 (100), 192 (18), 165 (23), 109 (21), 89 (29).
Notes and references
-
(a) C. Enguehard-Gueiffier and A. Gueiffier, Mini-Rev. Med. Chem., 2007, 7, 888 CrossRef CAS;
(b) F. Couty and G. Evano, Comprehensive Heterocyclic Chemistry, Elsevier, Oxford, 2008 Search PubMed.
-
(a) C. B. Vu, J. E. Bemis, J. S. Disch, P. Y. Ng, J. J. Nunes, J. C. Milne, D. P. Carney, A. V. Lynch, J. J. Smith, S. Lavu, P. D. Lambert, D. J. Gagne, M. R. Jirousek, S. Schenk, J. M. Olefsky and R. B. Perni, J. Med. Chem., 2009, 52, 1275 CrossRef CAS PubMed;
(b) Y. Matsuya, Y. Kobayashi, S. Uchida, Y. Itoh, H. Sawada, T. Suzuki, N. Miyata, K. Sugimoto and N. Toyooka, Bioorg. Med. Chem. Lett., 2013, 2317, 4907 CrossRef PubMed.
- A. Andreani, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli, D. Lannigan, J. Smith, D. Scudiero, S. Kondapaka and R. H. Shoemaker, Eur. J. Med. Chem., 2011, 46, 4311 CrossRef CAS PubMed.
- Selected references, see:
(a) J.-H. Park, M. I. El-Gamal, Y. S. Lee and C.-H. Oh, Eur. J. Med. Chem., 2011, 46, 5769 CrossRef CAS PubMed;
(b) A. R. Ali, E. R. El-Bendary, M. A. Ghaly and I. A. Shehata, Eur. J. Med. Chem., 2014, 75, 492 CrossRef CAS PubMed.
-
(a) J. S. Barradas, M. I. Errea, N. B. D'Accorso, C. S. Sepulveda and E. B. Damonte, Eur. J. Med. Chem., 2010, 46, 259 CrossRef PubMed;
(b) T. Juspin, M. Laget, T. Terme, N. Azas and P. Vanelle, Eur. J. Med. Chem., 2010, 45, 840 CrossRef CAS PubMed.
- R. Budriesi, P. Ioan, A. Leoni, N. Pedemonte, A. Locatelli, M. Micucci, A. Chiarini and L. J. V. Galietta, J. Med. Chem., 2011, 54, 3885 CrossRef CAS PubMed.
-
(a) D. Belohlavek and P. J. Malfertheiner, Scand. J. Gastroenterol., Suppl., 1979, 54, 44 CAS;
(b) R. J. Boerner and H. J. Moller, Psychopharmakotherapie, 1997, 4, 145 Search PubMed;
(c) Y. Abe, H. Kayakiri, S. Satoh, T. Inoue, Y. Sawada, N. Inamura, M. Asano, I. Aramori, C. Hatori, H. Sawai, T. Oku and H. Tanaka, J. Med. Chem., 1998, 41, 4587 CrossRef CAS PubMed;
(d) K. Mizushige, T. Ueda, K. Yukiiri and H. Suzuki, Cardiovasc. Drug Rev., 2002, 20, 163 CrossRef CAS PubMed;
(e) T. Okubo, R. Yoshikawa, S. Chaki, S. Okuyama and A. Nakazato, Bioorg. Med. Chem., 2004, 12, 423 CrossRef CAS PubMed;
(f) H. Mori, M. Tanaka, R. Kayasuga, T. Masuda, Y. Ochi, H. Yamada, K. Ki shikawa, M. Ito and T. Nakamura, Bone, 2008, 43, 840 CrossRef CAS PubMed.
- References for imidazo-[2,1-b]thiazoles, see:
(a) G. Kolavi, V. Hegde and I. A. Khazi, Tetrahedron Lett., 2006, 47, 2811 CrossRef CAS PubMed;
(b) G. Huang, H. Sun, X. Qiu, C. Jin, C. Lin, Y. Shen, J. Jiang and L. Wang, Org. Lett., 2011, 13, 5224 CrossRef CAS PubMed;
(c) C. Mukherjee, K. T. Watanabe and E. R. Biehl, Tetrahedron Lett., 2012, 53, 6008 CrossRef CAS PubMed.
- References for imidazo-[1,2-a]pyridine, see:
(a) N. Chernyak and V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2743 CrossRef CAS PubMed;
(b) E. Kianmehr, M. Ghanbari, M. N. Niri and R. Faramarzi, J. Comb. Chem., 2010, 12, 41 CrossRef CAS PubMed;
(c) H. G. Wang, Y. Wang, D. D. Liang, L. Y. Liu, J. C. Zhang and Q. Zhu, Angew. Chem., Int. Ed., 2011, 50, 5678 CrossRef CAS PubMed;
(d) L. J. Ma, X. P. Wang, W. Yu and B. Han, Chem. Commun., 2011, 47, 11333 RSC;
(e) Ł. Albrecht, A. Albrecht, L. K. Ransborg and K. A. Jørgensen, Chem. Sci., 2011, 2, 1273 RSC;
(f) D. Sucunza, A. Samadi, M. Chioua, D. B. Silva, C. Yunta, L. Infantes, M. C. Carreiras, E. Soriano and J. Marco-Contelles, Chem. Commun., 2011, 47, 5043 RSC;
(g) R. L. Yan, H. Yan, C. Ma, Z. Y. Ren, X. A. Gao, G. S. Huang and Y. M. Liang, J. Org. Chem., 2012, 77, 2024 CrossRef CAS PubMed;
(h) S. K. Guchhait, A. L. Chandgude and G. Priyadarshani, J. Org. Chem., 2012, 77, 4438 CrossRef CAS PubMed;
(i) D. K. Nair, S. M. Mobin and I. N. N. Namboothiri, Org. Lett., 2012, 14, 4580 CrossRef CAS PubMed;
(j) C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han and A. Lei, Chem. Commun., 2012, 48, 11073 RSC;
(k) J. Zeng, Y. J. Tan, M. L. Leow and X.-W. Liu, Org. Lett., 2012, 14, 4386 CrossRef CAS PubMed;
(l) H. Yan, R. Yan, S. Yang, X. Gao, Y. Wang, G. Huang and Y. Liang, Chem.–Asian J., 2012, 7, 2028 CrossRef CAS PubMed;
(m) M. Chioua, E. Soriano, L. Infantes, M. L. Jimeno, J. Marco-Contelles and A. Samadi, Eur. J. Org. Chem., 2013, 35 CrossRef CAS;
(n) A. K. Bagdi, M. Rahman, S. Santra, A. Majee and A. Hajra, Adv. Synth. Catal., 2013, 355, 1741 CrossRef CAS;
(o) Y. Gao, M. Yin, W. Wu, H. Huang and H. Jiang, Adv. Synth. Catal., 2013, 355, 2263 CrossRef CAS;
(p) D. C. Mohan, S. N. Rao and S. Adimurthy, J. Org. Chem., 2013, 78, 1266 CrossRef PubMed;
(q) D. C. Mohan, R. R. Donthiri, S. N. Rao and S. Adimurthy, Adv. Synth. Catal., 2013, 355, 2217 CrossRef;
(r) J. Koubachi, S. El Kazzouli, M. Bousmina and G. Guillaumet, Eur. J. Org. Chem., 2014, 5119 CrossRef CAS;
(s) S. Mishra, K. Monir, S. Mitra and A. Hajra, Org. Lett., 2014, 16, 6084 CrossRef CAS PubMed;
(t) A. K. Bagdi, S. Santra, K. Monir and A. Hajra, Chem. Commun., 2015, 51, 1555 RSC.
-
(a) D. C. Mohan, S. N. Rao, C. Ravi and S. Adimurthy, Asian J. Org. Chem., 2014, 3, 609 CrossRef CAS;
(b) Z. Li, J. Hong and X. Zhou, Tetrahedron, 2011, 67, 3690 CrossRef CAS PubMed;
(c) W. Ge, X. Zhu and Y. Wei, Eur. J. Org. Chem., 2013, 6015 CrossRef CAS;
(d) S. M. Patil, S. Kulkarni, M. Mascarenhas, R. Sharma, S. M. Roopan and A. Roychowdhury, Tetrahedron, 2013, 69, 8255 CrossRef CAS PubMed;
(e) Z. Gao, X. Zhu and R. Zhang, RSC Adv., 2014, 4, 19891 RSC;
(f) C. Ravi, D. C. Mohan and S. Adimurthy, Org. Lett., 2014, 16, 2978 CrossRef CAS PubMed;
(g) M.-A. Hiebel and S. Berteina-Raboin, Green Chem., 2015, 17, 937 RSC;
(h) X.-M. Ji, S.-J. Zhou, F. Chen, X.-G. Zhang and R.-Y. Tang, Synthesis, 2015, 659 CAS.
-
(a) J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib and G. Guillaumet, Synlett, 2006, 3237 CAS;
(b) B. B. Touré, B. S. Lane and D. Sames, Org. Lett., 2006, 8, 1979 CrossRef PubMed;
(c) M. Aginagalde, Y. Vara, A. Arrieta, R. Zangi, V. L. Cebolla, A. Delgado-Camon and F. P. Cossio, J. Org. Chem., 2010, 75, 2776 CrossRef CAS PubMed;
(d) P.-V. Kumar, W.-S. Lin, J.-S. Shen, D. Nandi and H. M. Lee, Organometallics, 2011, 30, 5160 CrossRef CAS;
(e) H. Cao, H. Zhan, Y. Lin, X.-L. Lin, Z. Du and H. Jiang, Org. Lett., 2012, 14, 1688 CrossRef CAS PubMed;
(f) H.-Y. Fu, L. Chen and H. Doucet, J. Org. Chem., 2012, 77, 4473 CrossRef CAS PubMed;
(g) H.-Y. Fu, L. Zhao, C. Bruneau and H. Doucet, Synlett, 2012, 23, 2077 CrossRef CAS PubMed;
(h) H. Cao, Y. Lin, H. Zhan, Z. Du, X. Lin, Q.-M. Liang and H. Zhang, RSC Adv., 2012, 2, 5972 RSC;
(i) F. Belkessam, F. Derridj, L. Zhao, A. Elias, M. Aidene, S. Djebbar and H. Doucet, Tetrahedron Lett., 2013, 54, 4888 CrossRef CAS PubMed;
(j) J. Lee, J. Chung, S.-M. Byun, B. M. Kim and C. Lee, Tetrahedron, 2013, 69, 5660 CrossRef CAS PubMed;
(k) C.-H. Ke, B.-C. Kuo, D. Nandi and H. M. Lee, Organometallics, 2013, 32, 4775 CrossRef CAS;
(l) S. Wang, W. Liu, J. Cen, J. Liao, J. Huang and H. Zhan, Tetrahedron Lett., 2014, 55, 1589 CrossRef CAS PubMed;
(m) L. Zhao, H. Zhan, J. Liao, J. Huang, Q. Chen, H. Qiu and H. Cao, Catal. Commun., 2014, 56, 65 CrossRef CAS PubMed;
(n) S. Huang, J. Qing, S. Wang, H. Wang, L. Zhang and Y. Tang, Org. Biomol. Chem., 2014, 12, 2344 RSC.
-
(a) J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib and G. Guillaumet, Synthesis, 2008, 2537 CAS;
(b) J. Koubachi, S. Berteina-Raboin, A. Mouaddib and G. Guillaumet, Synthesis, 2009, 271 CAS;
(c) H. Cao, S. Lei, J. Liao, J. Huang, H. Qiu, Q. Chen, S. Qiu and Y. Chen, RSC Adv., 2014, 4, 50137 RSC;
(d) H. Zhan, L. Zhao, N. Li, L. Chen, J. Liu, J. Liao and H. Cao, RSC Adv., 2014, 4, 32013 RSC.
-
(a) T. Fukuyama, N. Chatani, F. Kakiuchi and S. Murai, J. Am. Chem. Soc., 1996, 118, 493 CrossRef;
(b) N. Chatani, Y. Ie, F. Kakiuchi and S. Murai, J. Org. Chem., 1997, 62, 2604 CrossRef CAS PubMed;
(c) T. Fukuyama, N. Chatani, J. Tatsumi, F. Kakiuchi and S. Murai, J. Am. Chem. Soc., 1998, 120, 11522 CrossRef CAS.
-
(a) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu and J.-C. Xiao, Angew. Chem., Int. Ed., 2011, 50, 1896 CrossRef CAS PubMed;
(b) K. Monir, A. K. Bagdi, M. Ghosh and A. Hajra, J. Org. Chem., 2015, 80, 1332 CrossRef CAS PubMed.
-
(a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2004 Search PubMed;
(b) I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009 Search PubMed;
(c) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320 RSC;
(d) W. Zhu, J. Wang, S. Wang, Z. Gu, J. L. Acena, K. Izawa, H. Liu and V. A. Soloshonok, J. Fluorine Chem., 2014, 167, 37 CrossRef CAS PubMed.
- C. Zhang, Org. Biomol. Chem., 2014, 12, 6580 CAS.
-
(a) L. Chu and F.-L. Qing, Acc. Chem. Res., 2014, 47, 1513 CrossRef CAS PubMed;
(b) X. Liu, C. Xu, M. Wang and Q. Liu, Chem. Rev., 2015, 115, 683 CrossRef CAS PubMed.
- J. Charpentier, N. Fruh and A. Togni, Chem. Rev., 2015, 115, 650 CrossRef CAS PubMed.
- C. Zhang, Adv. Synth. Catal., 2014, 356, 2895 CrossRef CAS.
- Selected references, see:
(a) B. R. Langlois, E. Laurent and N. Roidot, Tetrahedron Lett., 1991, 32, 7525 CrossRef CAS;
(b) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14411 CrossRef CAS PubMed;
(c) Y. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara and P. S. Baran, Nature, 2012, 492, 95 CrossRef CAS PubMed;
(d) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond and P. S. Baran, J. Am. Chem. Soc., 2012, 134, 1494 CrossRef CAS PubMed;
(e) A. Evitt, L. M. Tedaldi and G. K. Wagner, Chem. Commun., 2012, 48, 11856 RSC;
(f) D. Musumeci, C. Irace, R. Santamaria and D. Montesarchio, MedChemComm, 2013, 4, 1405 RSC;
(g) F. O'Hara, D. G. Blackmond and P. S. Baran, J. Am. Chem. Soc., 2013, 135, 12122 CrossRef PubMed;
(h) Z. Li, Z. Cui and Z.-Q. Liu, Org. Lett., 2013, 15, 406 CrossRef CAS PubMed;
(i) M. Wu, X. Ji, W. Dai and S. Cao, J. Org. Chem., 2014, 79, 8984 CrossRef CAS PubMed;
(j) E. P. Stout, M. Y. Choi, J. E. Castro and T. F. Molinski, J. Med. Chem., 2014, 57, 5085 CrossRef CAS PubMed;
(k) J. C. Fennewald and B. H. Lipshutz, Green Chem., 2014, 16, 1097 RSC.
- P. T. W. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, NY, 1998 Search PubMed.
-
(a) G. Cevasco and C. Chiappe, Green Chem., 2014, 16, 2375 RSC;
(b) A. Pathak, N. Jangid, R. Ameta and P. B. Punjabi, Green Chem., 2014, 16, 109 Search PubMed.
- H. Kimoto, S. Fujii and L. Cohen, J. Org. Chem., 1982, 47, 2867 CrossRef CAS.
Footnote |
† Electronic supplementary information (ESI) available: Copies of 1H and 13C spectra for all compounds. See DOI: 10.1039/c5ra02888d |
|
This journal is © The Royal Society of Chemistry 2015 |
Click here to see how this site uses Cookies. View our privacy policy here.