Tukaram M.
Pimpalpalle
,
Jian
Yin‡
and
Torsten
Linker
*
Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. E-mail: linker@uni-potsdam.de; Fax: +49 331 9775076; Tel: +49 331 9775212
First published on 1st September 2011
Barton esters have been introduced into the side chain of carbohydrates with high yields in only a few steps from easily available glycals. Their radical reactions afford 2-C-methyl and 2-C-bromomethyl hexoses, pentoses and disaccharides in good yields in analytically pure form. Since the Barton esters have been synthesized by an oxidative radical addition and their transformations by reductive radical processes, our results demonstrate the power of such reactions in carbohydrate chemistry.
![]() | ||
| Scheme 1 Generation of radicals 3 from carboxylic acids 1. | ||
Although there are numerous examples of tin hydride radical reactions in carbohydrate chemistry,1 the Barton reaction was only applied in this field in the total synthesis of keto-deoxy-octulosonic acids (KDO),5 to generate radicals at the anomeric center6 or with carbohydrates as chiral auxiliaries.7 Herein we describe the first Barton reactions of 2-C-branched saccharides, which allow the reduction and further functionalization of the side-chain of carbohydrates.
|
|
|||||
|---|---|---|---|---|---|
| Entry | Config. | Activator | R | Conv. (%) | 4a (%)b |
| a For procedure see experimental section. b Yield of analytically pure products, isolated by column chromatography. c Decomposition of starting material 1a. | |||||
| 1 | gluco | SOCl2 | Na | >97 | <5c |
| 2 | gluco | (COCl)2 | Na | >97 | <5c |
| 3 | gluco | DCC | H | 70 | 65 |
| 4 | gluco | EDCI | H | >97 | 90 |
| 5 | galacto | EDCI | H | >97 | 93 |
| 6 | xylo | EDCI | H | >97 | 91 |
| 7 | arabino | EDCI | H | >97 | 89 |
| 8 | malto | EDCI | H | >97 | 81 |
| 9 | lacto | EDCI | H | >97 | 83 |
The best conditions were finally found with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDCI) as activator for the acid group.11 Thus, Barton estergluco-4a was isolated in 90% yield (entry 4). We were able to successfully apply these conditions for other hexoses, pentoses and even disaccharides (Table 1, entries 5–9). Although Barton esters are quite sensitive compounds, all products 4a were isolated in good to high yields in analytically pure form, including correct elemental analysis (experimental section). Accordingly, we found a convenient entry to such radical precursors in only a few steps from easily available glycals.
To establish the potential of Barton esters 4a in the synthesis of 2-C-branched saccharides, we first investigated reductive decarboxylations (Table 2). This is a very common transformation in radical chemistry, and it requires only t-butanethiol as hydrogen atom donor and no toxic tin hydrides.4 However, due to the lability of carbohydrates, the conditions for the initiation had to be carefully optimized with Barton estergluco-4a. Thus, simple thermolysis in benzene afforded the 2-C-methyl glycoside gluco-5 with only 30% yield besides decomposition of the starting material (entry 1). Therefore, we investigated the initiation of the Barton reaction by photolysis, which is attractive in terms of lower temperatures and milder conditions.4c However, sodium lamp irradiation gave no conversion (entry 2). With a tungsten lamp, which was used in natural product synthesis via Barton esters very recently,12 the yield was increased to 56% (entry 3). Finally, the best results were obtained with a 250 W low-pressure mercury lamp, which afforded 2-C-methyl glycoside gluco-5 with 78% yield (entry 4). We were again able to apply these conditions for other hexoses, pentoses and disaccharides (Table 2, entries 5–9) and all products 5 were isolated with moderate to good yields in analytically pure form (experimental section). Interestingly, our synthetic approach is based on a combination of oxidative (CAN-mediated addition of malonates to glycals) and reductive (Barton decarboxylation) radical reactions, demonstrating the power of such transformations in carbohydrate chemistry. Thus, we found a new entry to 2-C-methyl saccharides, which are available by cyclopropane-opening only as anomeric mixtures.13
|
|
|||||
|---|---|---|---|---|---|
| Entry | Config. | Temp. (°C) | Light source | Conv. (%) | 5 (%)b |
| a For procedure see experimental section. b Yield of analytically pure products, isolated by column chromatography. c Decomposition of starting material 4a. | |||||
| 1 | gluco | 80 | — | >97 | 30c |
| 2 | gluco | 25 | Na lamp | <5 | <5 |
| 3 | gluco | 25 | W lamp | 70 | 56 |
| 4 | gluco | 25 | Hg lamp | >97 | 78 |
| 5 | galacto | 25 | Hg lamp | >97 | 79 |
| 6 | xylo | 25 | Hg lamp | >97 | 77 |
| 7 | arabino | 25 | Hg lamp | >97 | 71 |
| 8 | malto | 25 | Hg lamp | >97 | 68 |
| 9 | lacto | 25 | Hg lamp | >97 | 64 |
To introduce functional groups by the Barton reaction, the decarboxylative halogenation is an attractive choice, since long radical chains and mild conditions are advantageous.4 Again, we employed a 250 W low-pressure mercury lamp for initiation, this time in the presence of bromotrichloromethane as a cheap bromine source (Table 3). Indeed, the 2-C-bromomethyl glycosides 6 were isolated with moderate to good yields with gluco-, galacto-, xylo-, arabino-, malto- and lacto-configurations. Although similar compounds are available by cyclopropane-opening,13a,14 our method is applicable for various saccharides and provides sole diastereomers and no anomeric mixtures. Furthermore, the bromides 6 might serve as precursors for SN2 or radical reactions in carbohydrate chemistry.
|
|
|||||
|---|---|---|---|---|---|
| Entry | Config. | Temp. (°C) | Light Source | Conv. (%) | 6 (%)b |
| a For procedure see experimental section. b Yield of analytically pure products, isolated by column chromatography. | |||||
| 1 | gluco | 25 | Hg lamp | >97 | 76 |
| 2 | galacto | 25 | Hg lamp | >97 | 74 |
| 3 | xylo | 25 | Hg lamp | >97 | 71 |
| 4 | arabino | 25 | Hg lamp | >97 | 73 |
| 5 | malto | 25 | Hg lamp | >97 | 70 |
| 6 | lacto | 25 | Hg lamp | >97 | 69 |
:
1); [α]20D = +25.6 (c = 1.02 in CHCl3); IR (film): v = 2925, 1806, 1607, 1525, 1446, 1410, 1362, 1281, 1207, 1050 cm−1; 1H NMR (500 MHz, CDCl3): δ = 2.26 (ddt, J = 11.0, 8.7, 6.0 Hz, 1H, 2-H), 2.77 (d, J = 6.0 Hz, 2H, 7-H), 3.40 (dt, J = 9.3, 5.2 Hz, 1H, 5-H), 3.42 (s, 3H, OMe), 3.50 (dd, J = 11.0, 8.8, Hz, 1H, 3-H), 3.64 (dd, J = 9.3, 8.8 Hz, 1H, 4-H), 3.68 (d, J = 5.2 Hz, 2H, 6-H), 4.25 (d, J = 8.7 Hz, 1H, 1-H), 4.47 (d, J = 11.9 Hz, 1H, CH2Ph), 4.52 (d, J = 10.9 Hz, 1H, CH2Ph), 4.57 (d, J = 11.9 Hz, 1H, CH2Ph), 4.58 (d, J = 11.9 Hz, 1H CH2Ph), 4.71 (d, J = 11.0, Hz, 1H, CH2Ph), 4.91 (d, J = 11.0 Hz, 1H, CH2Ph), 6.24 (dt, J = 7.0, 1.5 Hz 1H thiopyr. C-H), 6.96 (dt, J = 7.0, 1.5 Hz 1H thiopyr. C-H), 7.00 (dd, J = 7.0, 1.5 Hz 1H thiopyr. C-H), 7.06-7.28 (m, 15H, arom. H), 7.51 (dd, J = 7.0, 1.5 Hz, 1H thiopyr. C-H); 13C NMR (125 MHz, CDCl3): δ = 30.2 (t, C-7), 44.7 (d, C-2), 56.8 (q, OMe), 68.4 (t, C-6), 73.3, 74.5, 74.7 (3t, CH2Ph), 74.9, 79.5, 81.8 (3d, C-3, C-4, C-5), 102.9 (d, C-1), 112.1 (d, thiopyr. N-C-H), 127.5, 127.6, 127.7, 127.9, 128.2, 128.3 (15d, arom. C-H), 133.4, 136.8, 137.5 (3d, thiopyr. C-H), 137.6, 137.7, 137.8 (3 s, arom. C-CH2O), 167.2 (s, COOR), 175.5 (NC
S); Elemental analysis(%) calcd for C35H37NO7S: C 68.27, H 6.06, N 2.27, S 5.21; found: C 68.29, H 6.09, N 2.23, S 5.26; Mass (ESI-MS); m/z 638.41(M + Na)+.
:
1); [α]20D = +17.9 (c = 1.02 in CHCl3); IR (film): v = 2924, 1807, 1607, 1524, 1444, 1909, 1363, 1281, 1207, 1051 cm−1; 1H NMR (600 MHz, CDCl3): δ = 2.72 (ddt, J = 10.8, 8.5, 6.0 Hz, 1H, 2-H), 2.76 (dd, J = 14.6, 6.0 Hz, 1H, 7-H), 2.85 (dd, J = 14.6, 6.0 1H 7′-H), 3.40 (s, 3H, OMe), 3.46 (dd, J = 10.8, 2.2, Hz, 1H, 3-H), 3.53 (dd, J = 6.9, 5.8 Hz, 1H, 6-H), 3.56 (ddd, J = 8.8, 5.8, 0 Hz, 1H, 5-H), 3.63 (dd, J = 8.8, 6.9 Hz, 1H, 6′-H), 3.93 (d, J = 2.2 Hz, 1H, 4-H), 4.26 (d, J = 8.5 Hz, 1H 1-H), 4.35 (d, J = 11.1 Hz, 1H, CH2Ph), 4.39 (d, J = 11.7 Hz, 1H, CH2Ph), 4.43(d, J = 11.6 Hz, 1H, CH2Ph), 4.55 (d, J = 11.7 Hz, 1H, CH2Ph), 4.65 (d, J = 11.1 Hz, 1H, CH2Ph), 4.81 (d, J = 11.6 Hz, 1H, CH2Ph), 6.28 (dt, J = 6.8, 1.6 Hz 1H thiopyr. C-H), 7.01 (dd, J = 6.8, 1.5 Hz 1H thiopyr. C-H), 7.03 (dt, J = 6.8, 1.5 Hz 1H thiopyr. C-H), 7.15–7.21 (m, 15H, arom. H), 7.55 (dd, J = 6.8, 1.6 Hz, 1H thiopyr. C-H);13C NMR (150 MHz, CDCl3): δ = 30.30 (t, C-7), 40.1 (d, C-2), 56.7 (q, OMe), 68.7 (t, C-6), 70.6, 73.5, 80.6 (3d, C-3, C-4, C-5), 71.5, 73.6, 74.4 (3t, CH2Ph), 103.5 (C-1), 112.1 (d, thiopyr. N-C-H), 127.5, 127.8, 127.9, 128.0, 128.1, 128.2 (15d, arom. C-H), 133.3, 137.1, 137.7 (3d, thiopyr. C-H), 137.2, 137.8, 138.5 (3 s, arom. C-CH2O), 167.5 (s, COOR), 175.9 (NC
S); Elemental analysis(%) calcd for C35H37NO7S: C 68.27, H 6.06, N 2.27, S 5.21; found: C 68.23, H 6.03, N 2.29, S 5.29; Mass (ESI-MS); m/z 638.44(M + Na)+.
:
1); [α]20D = +32.7 (c = 1.01 in CHCl3); IR (film): v = 3063, 3030, 2924, 1812, 1722, 1607, 1496, 1465, 1374, 1205, 1157, 1069, 1028, 995 cm−1; 1H NMR (600 MHz, CDCl3): δ = 2.18 (dddd, J = 10.8, 8.3, 6.8, 5.3 Hz 1H, 2-H), 2.75 (dd, J = 15.5, 6.8 Hz 1H, 6-H), 2.85 (dd, J = 15.5, 5.3 Hz, 1H, 6′-H), 3.21 (dd, J = 11.7, 9.4 Hz, 1H 5-H), 3.40 (s, 3H, OMe), 3.47 (dd, J = 10.8, 8.2, Hz, 1H, 3-H), 3.62 (ddd, J = 9.4, 8.2, 5.0 Hz, 1H, 4-H), 3.98 (dd, J = 11.7, 5.0 Hz, 1H, 5′-H), 4.23 (d, J = 8.3 Hz, 1H, 1-H), 4.56 (d, J = 10.9 Hz, 1H, CH2Ph) 4.57 (d, J = 11.7 Hz, 1H, CH2Ph), 4.61 (d, J = 11.7 Hz, 1H, CH2Ph), 4.96 (d, J = 10.9 Hz, 1H, CH2Ph), 6.24 (dt, J = 6.8, 1.8 Hz 1H thiopyr. C-H), 6.90 (dd, J = 6.8, 1.8, Hz 1H thiopyr. C-H), 7.03 (dt, J = 6.8, 1.8 Hz 1H thiopyr. C-H), 7.21–7.28 (m, 10H, arom. H), 7.55 (dd, J = 6.8, 1.8 Hz, 1H thiopyr. C-H); 13C NMR (150 MHz, CDCl3): δ = 30.8 (t, C-6), 43.8 (d, C-2), 56.8 (q, OMe), 63.5 (t, C-5), 72.7, 74.6, (2t, CH2Ph), 79.5, 80.5 (2d, C-3, C-4), 103.4 (d, C-1), 112.0 (d, thiopyr. N-C-H), 127.8, 127.8, 127.9, 128.3, 128.5, 128.5 (10d, arom. C-H), 133.4, 137.1, 137.7 (3d, thiopyr. C-H), 137.8, 138.1, (2 s, arom. C-CH2O), 167.4 (s, COOR), 175.8 (NC
S); Elemental analysis(%) calcd for C27H29NO6S: C 65.44, H 5.90, N 2.83, S 6.47; found C 65.39, H 5.93, N 2.86, S 6.43; Mass (ESI-MS); m/z 518.24(M + Na)+.
:
1); [α]20D = +19.7 (c = 1.01 in CHCl3); IR (film): v = 3067, 3034, 2922, 1816, 1723, 1602, 1496, 1468, 1374, 1204, 1152, 1064, 1028, 995 cm−1; 1H NMR (600 MHz, CDCl3): δ = 2.70 (dddd, J = 11.0, 8.5, 6.6, 5.6 Hz 1H, 2-H), 2.83 (dd, J = 14.5, 5.6 Hz 1H, 6-H), 2.83 (dd, J = 14.5, 6.6 Hz, 1H, 6′-H), 3.29 (dd, J = 12.9, 3.6, Hz, 1H 5-H), 3.43 (s, 3H, OMe), 3.50 (dd, J = 11.0, 2.8 Hz, 1H, 3-H), 3.68 (ddd, J = 3.6, 2.8, 2.1 Hz, 1H, 4-H), 4.13 (dd, J = 12.9, 2.1 Hz, 1H, 5′-H), 4.24 (d, J = 8.5 Hz, 1H, 1-H), 4.26 (d, J = 11.3 Hz, 1H, CH2Ph), 4.49 (d, J = 11.3 Hz, 1H, CH2Ph), 4.58 (d, J = 12.3 Hz, 1H, CH2Ph), 4.72 (d, J = 12.3 Hz, 1H, CH2Ph), 6.32 (dt, J = 6.9, 1.8 Hz 1H thiopyr. C-H), 7.03 (dt, J = 6.9, 1.8, Hz 1H thiopyr. C-H), 7.05 (dt, J = 6.9, 1.8 Hz 1H thiopyr. C-H), 7.19–7.27 (m, 10H, arom. H), 7.32 (dd, J = 6.9, 1.8 Hz, 1H thiopyr. C-H); 13C NMR (150 MHz, CDCl3): δ = 30.3 (t, C-6), 40.3 (d, C-2), 56.8 (q, OMe), 63.5 (t, C-5), 69.3, 70.8 (2t, CH2Ph), 71.0, 78.7 (2d, C-3, C-4), 103.7 (d, C-1), 112.0 (d, thiopyr. N-C-H), 127.7, 127.9, 128.3, 128.8, 128.5, 133.5 (10d, arom. C-H), 137.0, 137.4, 137.7 (3d, thiopyr. C-H), 137.7, 137.8 (2 s, arom. C-CH2O), 167.6 (s, COOR), 176.2 (NC
S); Elemental analysis(%) calcd for C27H29NO6S: C 65.44, H 5.90, N 2.83, S 6.47; found C 65.37, H 5.99, N 2.82, S 6.44; Mass (ESI-MS); m/z 518.24(M + Na)+.
:
1); [α]20D = +26.2 (c = 1.02 in CHCl3); IR (film): v = 3032, 2941, 1832, 1751, 1648, 1497, 1480, 1215, 1155 cm−1; 1H NMR (500 MHz, CDCl3): δ = 2.42 (ddt, J = 10.9, 8.6, 6.0 Hz 1H, 2-H), 2.71 (dd, J = 15.9, 6.0 Hz 1H, 13-H), 2.85 (dd, J = 15.9, 6.0 Hz, 1H, 13′-H), 3.42 (dd, J = 9.5, 3.9 1H 12-H), 3.42 (ddd, J = 9.5, 3.9, 3.0, 1H, 11-H), 3.43 (s, 3H, OMe), 3.44 (dd, J = 7.9, 4.3 Hz, 1H, 6-H), 3.50 (dd J = 7.9, 2.8 Hz, 1H 6′-H), 3.56 (dd, J = 9.5, 3.0 Hz, 1H, 12′-H), 3.63 (dd, J = 10.9, 8.1 Hz, 1H, 3-H), 3.70 (dd, J = 11.3, 10.8 Hz, 1H, 9-H), 3.78 (dd, J = 9.0, 4.3, 2.8 Hz, 1H, 5-H), 3.83 (dd, J = 10.8, 9.5 Hz, 1H, 10-H), 3.88 (d, J = 11.3, 3.5 Hz, 1H, 8-H), 4.06 (t, J = 9.0, 8.0 Hz, 1H, 4-H), 4.2 (d, J = 8.6 Hz, 1H, 1-H), 4.29 (d, J = 12 Hz, 1H, CH2Ph), 4.40 (d, J = 11.0 Hz, 1H, CH2Ph), 4.46 (d, J = 12.0 Hz, 1H, CH2Ph), 4.47 (d, J = 11.5 Hz, 1H, CH2Ph), 4.48 (d, J = 11.0 Hz, 1H, CH2Ph), 4.49 (d, J = 11.2 Hz 1H CH2Ph), 4.50 (d, J = 11.2 Hz, 1H, CH2Ph), 4.52 (d, J = 11.5, Hz, 1H, CH2Ph), 4.66 (d, J = 11.0 Hz, 1H, CH2Ph), 4.73 (d, J = 10.3 Hz, 1H, CH2Ph), 4.76 (d, J = 10.3 Hz, 1H, CH2Ph), 4.97 (d, J = 11.0 Hz, 1H, CH2Ph), 5.33 (d, J = 3.5 1H, 7-H), 6.27 (dt, J = 7.0, 1.6 Hz 1H thiopyr. C-H), 6.90 (dd, J = 7.0, 1.6, Hz 1H thiopyr. C-H), 7.01 (dt, J = 7.0, 1.6 Hz 1H thiopyr. C-H), 7.03–7.29 (m, 30H, arom. H), 7.53 (dd, J = 7.0, 1.6 Hz, 1H thiopyr. C-H);13C NMR (125 MHz, CDCl3): δ = 31.5 (t, C-13), 44.2 (d, C-2), 57.7 (q, OMe), 69.3, 70.23 (2t, C-6, C-12), 72.2, 72.9, 75.9, 76.3, 78.7, 80.7 (6t, CH2Ph), 72.9, 74.2, 74.2, 74.3, 74.3, 76.0, 76.4 (7d, C-3, C-4, C-5, C-8, C-9, C-10, C-11), 98.0, 104.0 (2d, C-1, C-7), 113.1 (d, thiopyr. N-C-H), 128.4, 128.5, 128.5, 128.6, 128.7, 128.7, 128.8, 129.2, 129.9, 129.4 (30d arom. C-H), 138.0, 138.3, 138.6 (3d, thiopyr. C-H), 138.8, 138.9, 139.3, 139.3, 139.3, 139.6 (6 s, arom. C-CH2O), 168.4 (s, COOR), 176.8 (NC
S).
:
1); [α]20D = +13.2 (c = 1.01 in CHCl3); IR (film): v = 3035, 2941, 1836, 1752, 1647, 1497, 1480, 1335, 1210, 1151 cm−1; 1H NMR (500 MHz, CDCl3): δ = 2.24 (dddd, J = 11.2, 8.5, 6.3, 5.4 Hz, 1H, 2-H), 2.80 (dd, J = 15.3, 6.3 Hz, 1H, 13-H), 2.87 (dd, J = 15.5, 5.4 Hz, 1H, 13′-H), 3.1 (m, 4H, 5-H, 11-H), 3.42 (s, 3H, OMe), 3.44 (dd, J = 11.0, 8.8 Hz, 2H, 12-H), 3.65 (dd, J = 9.5, 7.9, Hz, 2H, 6-H), 3.81 (dd, J = 11.2, 10.1 Hz, 1H, 3-H), 3.81 (dd, J = 9.0, 3.8 Hz, 1H, 9-H), 4.00 (t, J = 9.0, 9.0 Hz, 1H, 8-H), 4.18 (d, J = 11.5 Hz, 1H, CH2Ph), 4.27 (d, J = 12.2 Hz, 1H, CH2Ph), 4.27 (d, J = 12.2 Hz, CH2Ph), 4.28 (d, J = 8.5 Hz, 1H, 1-H), 4.33 (d, J = 12.2 Hz, 1H, CH2Ph), 4.37 (d, J = 9.0 Hz, 1H, 7-H), 4.43 (d, J = 11.5 Hz, 1H, CH2Ph), 4.44 (d, J = 12.0 Hz, 1H, CH2Ph), 4.53 (d, J = 12.0 Hz, 1H, CH2Ph), 4.62 (d, J = 10.1, 2.2 Hz, 1H, 4-H), 4.62 (dd, J = 3.8, 2.5 Hz 1H 10-H), 4.87 (d, J = 12.0 Hz, 1H, CH2Ph), 5.14 (d, J = 10.2 Hz, 1H, CH2Ph), 6.20 (dt, J = 7.0, 1.8 Hz 1H thiopyr. C-H), 6.87 (dd, J = 7.0, 1.8, Hz, 1H thiopyr. C-H), 7.01 (dt, J = 7.0, 1.8 Hz 1H thiopyr. C-H), 7.01–7.29 (m, 30H, arom. H), 7.52 (dd, J = 7.0, 1.8 Hz, 1H thiopyr. C-H);13C NMR (125 MHz, CDCl3): δ = 30.6 (t, C-13), 44.4 (d, C-2), 56.8 (q, OMe), 68.0, 68.1 (2t, C-6, C-12), 72.60, 73.0, 73.6, 74.3, 74.5, 75.2 (6t, CH2Ph), 73.0, 73.3, 75.4, 76.8, 80.0, 80.3, 82.3 (7d, C-3, C-4, C-5, C-8, C-9, C-10, C-11), 102.6, 103.0 (2d, C-1, C-7), 112.0 (d, thiopyr. N-C-H), 127.2, 127.3, 127.3, 127.4, 127.5, 127-5, 127.6, 127.8, 128.0, 128.1, 128.2, 128.3 (30d, arom. C-H), 137.0, 137.3, 137.8 (3d, thiopyr. C-H), 138.0, 138.3, 138.5, 138.6, 138.7, 139.0 (6 s, arom. C-CH2O), 167.4 (s, COOR), 175.8 (NC
S).
:
1); [α]20D = +36.4 (c = 1.01 in CHCl3); IR (film): v = 2925, 1496, 1453, 1361, 1214, 1090, 1026, 907 cm−1;1H NMR (300 MHz, CDCl3): δ = 0.97 (d, J = 6.4, Hz, 3H, CH3), 1.70 (ddq, J = 10.6, 8.6, 6.4 Hz, 1H, 2-H), 3.16 (dd, J = 10.6, 8.7 Hz, 1H, 3-H), 3.38 (ddd, J = 9.6, 4.5, 2.4 Hz, 1H, 5-H), 3.43 (s, 3H, OMe), 3.51 (dd, J = 9.6, 8.7, Hz, 1H, 4-H), 3.67 (dd, J = 10.8, 4.5 Hz, 1H, 6-H), 3.68 (dd, J = 10.8, 2.5 Hz, 1H, 6′-H), 3.93 (d, J = 8.6 Hz, 1H, 1-H), 4.49 (d, J = 11.6 Hz, 2H, CH2Ph), 4.57 (d, J = 11.4 Hz, 1H, CH2Ph), 4.72 (d, J = 10.9 Hz, 1H, CH2Ph), 4.80 (d, J = 10.9 Hz, 1H, CH2Ph), 7.10–7.29 (m, 15H, arom. H); 13C NMR (75 MHz, CDCl3): δ = 12.5 (q, CH3), 42.6 (d, C-2), 56.7 (q, OMe), 69.2 (t, C-6), 73.4, 74.7, 75.1 (3t, CH2Ph), 75.2, 79.4, 85.2 (3d, C-3, C-4, C-5), 105.5 (d, C-1), 127.6, 127.7, 127.8, 127.8, 128.3, 128.3 (15d, arom. C-H), 138.1, 138.2. 138.4 (3 s, arom. C-CH2O); Elemental analysis(%); calcd for: C29H34O5 C 75.30, H 7.41,; found: C 75.33, H 7.47; Mass (ESI-MS); m/z 485.28(M + Na)+.
:
1); [α]20D = +31.4 (c = 1.02 in CHCl3); IR (film): v = 3030, 2924, 2867, 2358, 1718, 1496, 1454, 1363, 1206, 1153, 1078, 1028 cm−1; 1H NMR (300 MHz, CDCl3): δ = 0.95 (d, J = 6.6 Hz, 3H, CH3), 2.11 (ddq, J = 11.0, 8.6, 6.6 Hz, 1H, 2-H), 3.03 (d, J = 11.0, 2.6 Hz, 1H, 3-H), 3.39 (s, 3H, OMe), 3.44 (dd, J = 7.4, 5.4 Hz, 1H, 5-H), 3.57 (dd, J = 9.2, 5.4 Hz, 1H, 6-H), 3.57 (dd, J = 9.2. 7.4 Hz, 1H, 6′-H), 3.80 (d, J = 2.5 Hz, 1H, 4-H), 3.87 (d, J = 8.6 Hz, 1H, 1-H), 4.35 (d, J = 11.6 Hz, 1H, CH2Ph), 4.37 (d, J = 11.6 Hz, 1H, CH2Ph), 4.42 (d, J = 11.8 Hz, 1H, CH2Ph), 4.53 (d, J = 11.7, 1H, CH2Ph), 4.62 (d, J = 11.7 Hz, 1H, CH2Ph), 4.80 (d, J = 11.8 Hz, 1H, CH2Ph), 7.15–7.28 (m, 15H, arom. H); 13C NMR (75 MHz, CDCl3): δ = 12.3 (q, CH3), 37.3(d, C-2), 56.6 (q, OMe), 69.3 (t, C-6), 71.6, 73.5, 74.1 (3t, CH2Ph), 70.6, 73.6, 83.0 (3d, C-3, C-4, C-5), 106.2 (d, C-1), 127.4, 127.7, 127.8, 127.8, 128.1, 128.3 (15d, arom. C-H), 138.0, 138.0, 138.8 (3 s, arom. C-CH2O); Elemental analysis(%) calcd for: C29H34O5 C 75.30, H 7.41; found: C 75.33, H 7.48; Mass (ESI-MS); m/z 485.28(M + Na)+.
:
1); [α]20D = +28.4 (c = 1.02 in CHCl3); IR (film): v = 2917, 2849, 1496, 1454, 1367, 1204, 1175, 1091, 1072, 1028 cm−1; 1H NMR (300 MHz, CDCl3): δ = 0.97 (d, J = 6.6 Hz, 3H, CH3), 1.61 (ddq, J = 11.6, 8.4, 6.6 Hz, 1H, 2-H), 3.12 (ddd, J = 9.7, 8.5, 1.8 Hz, 2H, 5-H), 3.38 (s, 3H, OMe), 3.54 (ddd, J = 9.7, 8.5, 5.1, Hz, 1H, 4-H), 3.89 (d, J = 8.4 Hz, 1H, 1-H), 3.94 (dd, J = 11.5, 5.1 Hz, 1H, 3-H), 4.55 (d, J = 11.5 Hz, 1H, CH2Ph), 4.57 (d, J = 11.0 Hz, 1H, CH2-Ph), 4.62 (d, J = 11.5 Hz, 1H, CH2Ph), 4.85 (d, J = 11.0 Hz, 1H, CH2Ph), 7.20–7.27 (m, 10H, arom. H); 13C NMR (75 MHz, CDCl3): δ = 12.8 (q, CH3), 41.7 (d, C-2), 56.5 (q, OMe), 63.6 (t, C-5), 72.6, 74.8, (2t, CH2Ph), 79.1, 83.4 (3d, C-3, C-4), 106.0 (d, C-1), 127.5, 127.6, 127.8, 128.0, 128.3 (10d, arom. C-H), 138.2, 138.5, (2 s, arom. C-CH2O); Elemental analysis(%) calcd for: C21H26O4 C 73.66, H 7.65; found: C 73.61, H 7.80; Mass (ESI-MS); m/z 365.56(M + Na)+
:
1); [α]20D = +13.9 (c = 1.02 in CHCl3); IR (film): v = 2912, 2846, 1494, 1451, 1362, 1204, 1178, 1093, 1072, 1021 cm−1; 1H NMR (300 MHz, CDCl3): δ = 0.95 (d, J = 6.6 Hz, 3H, CH3), 2.11 (ddq, J = 10.6, 8.2, 6.6 Hz, 1H, 2-H), 3.0 (dd, J = 10.6, 3.0 1H, 3-H), 3.18 (d, J = 12.8 1H, 5-H), 3.38 (s, 3H, OMe), 3.53 (dd, J = 3.0, 2.6 Hz, 1H, 4-H), 3.81 (d, J = 8.2 Hz, 1H. 1-H), 4.06 (dd, J = 12.8, 2.6 Hz, 1H, 5′-H), 4.24 (d, J = 11.9 Hz, 1H, CH2Ph), 4.46 (d, J = 11.9 Hz, 1H, CH2-Ph), 4.52 (d, J = 12.6 Hz, 1H, CH2Ph), 4.68 (d, J = 12.6 Hz, 1H, CH2Ph), 7.13–7.30 (m, 10H, arom. H); 13C NMR (75 MHz, CDCl3): δ = 12.5 (q, CH3), 37.4 (d, C-2), 56.4 (q, OMe), 63.0 (t, C-5), 70.7, 70.7, (2t, CH2Ph), 69.6, 80.6 (3d, C-3, C-4), 106.1 (d, C-1), 127.4, 127.5, 127.6, 127.8, 128.2 (10d, arom. C-H), 138.0, 138.3 (2 s, arom. C-CH2O); Elemental analysis(%) calcd for: C21H26O4 C 73.66, H 7.65; found: C 73.56, H 7.78; Mass (ESI-MS); m/z 365.54(M + Na)+.
:
1); [α]20D = +36.9 (c = 1.02 in CHCl3); IR (film): v = 3032, 2943, 1833, 1753, 1649, 1495, 1483, 1339, 1211, 1153 cm−1; 1H NMR (500 MHz, CDCl3): δ = 1.00 (d, J = 4.1, Hz, 3H, CH3), 1.68 (ddq, J = 9.8, 8.6, 4.1, Hz, 1H, 2-H), 3.07 (dd, J = 9.8, 8.5 Hz 1H, 3-H), 3.27 (dd, J = 6.8, 4.2 Hz, 1H, 6-H), 3.28 (dd, J = 6.8, 3.8 Hz, 1H, 6′-H), 3.29 (dd, J = 7.6, 5.2 Hz, 1H, 12-H), 3.30 (dd, J = 7.6, 3.0 Hz, 1H, 12′-H), 3.40 (s, 3H, OMe), 3.44 (dd, J = 9.8, 8.6 Hz, 1H, 9-H), 3.67 (ddd J = 8.4, 4.2, 3.8 Hz, 1H, 5-H), 3.69 (ddd, J = 7.8, 5.2, 3.6 Hz 1H, 11-H), 3.74 (dd, J = 8.4, 8.3 Hz, 1H, 4-H), 3.83 (dd J = 9.8, 7.8 Hz, 1H, 10-H), 3.89 (d, J = 2.4 Hz, 1H, 7-H), 3.92 (dd J = 8.6, 2.4 Hz, 1H, 8-H), 4.15 (d, J = 12.0 Hz, 1H, CH2Ph), 4.26 (d, J = 12.8 Hz, 1H CH2Ph), 4.33(d, J = 12.0 Hz, 1H, CH2Ph), 4.36 (d, J = 8.6 Hz, 1H, 1-H), 4.41 (d, J = 10.0 Hz, 1H, CH2Ph), 4.46 (d, J = 11.0 Hz, 1H, CH2Ph), 4.47 (d, J = 12.0 Hz, 1H, CH2Ph), 4.50 (d, J = 12.0 Hz, 1H, CH2Ph), 4.65 (d, J = 10.0 Hz, 1H, CH2Ph), 4.72 (d, J = 11.0 Hz 1H CH2Ph), 4.76 (d, J = 11.0 Hz, 1H, CH2Ph) 4.89 (d, J = 112.0 Hz, 1H, CH2Ph), 5.03,(d, J = 11.0 Hz, 1H, CH2Ph), 7.03–7.25 (m, 30H, arom. H), 13C NMR (125 MHz, CDCl3): δ = 12.6 (q, CH3), 42.1 (d, C-2), 56.5 (q, OMe), 68.2, 68.6 (2t, C-6, C-12), 72.7, 73.1, 73.4, 74.6, 74.7, 75.2, (6t, CH2Ph), 73.0, 74.0, 75.6, 77.3, 80.2, 82.6, 83.2 (7d, C-3, C-4, C-5, C-8, C-9, C-10, C-11), 103.8, 106.7 (2d, C-1, C-7), 127.0, 127.2, 127.3, 127.4, 127.5, 127.6, 127.8, 127.9, 128.0, 128.1, 128.3(30d, arom. C-H), 138.2, 138.6, 138.6, 138.9, 139.1, 139.1 (6 s, arom. C-CH2O); Elemental analysis(%) calcd for: C56H62O10 C 75.14, H 6.98; found: C 75.27, H 7.18; Mass (ESI-MS); m/z894.54(M)+.
:
1); [α]20D = +21.3 (c = 1.02 in CHCl3); IR (film): v = 3035, 2941, 1836, 1752, 1647, 1497, 1480, 1335, 1210, 1151 cm−1; 1H NMR (300 MHz, CDCl3): δ = 1.16 (d, J = 6.4, Hz, 3H, CH3), 1.84 (ddq, J = 10.6, 8.7, 6.4, Hz, 1H, 2-H), 3.23 (dd, J = 10.6, 8.7 Hz, 1H, 3-H), 3.56 (s, 3H, OMe), 3.63 (d, J = 9.8 Hz, 1H, 9-H), 3.41 (dd J = 6.5, 4.6 Hz, 1H, 6-H), 3.43 (dd, J = 7.2, 5.3 Hz, 1H, 12-H), 3.45 (dd, J = 6.5, 3.6 Hz, 1H, 6′-H), 3.48 (dd, J = 7.2, 6.0 Hz, 1H, 12′-H), 3.80 (ddd, J = 8.3, 4.6, 3.6 Hz, 1H, 5-H), 3.84 (ddd, J = 6.0, 5.3, 2.0 Hz, 1H, 11-H), 3.92 (dd, J = 9.8, 2.3 Hz, 1H, 8-H), 3.99 (d, J = 2.0 Hz, 1H, 10-H), 4.04 (dd, J = 8.7, 8.3 Hz, 1H, 4-H), 4.08 (d, J = 8.7, 3.6 Hz, 1H, 1-H), 4.29 (d, J = 11.7 Hz, 1H, CH2Ph), 4.40 (d, J = 11.7 Hz, 1H, CH2Ph), 4.48 (d, J = 11.4 Hz, 1H, CH2Ph), 4.48 (d, J = 10.2 Hz, 1H, CH2Ph), 4.57 (d, J = 10.0 Hz, 1H, CH2Ph), 4.61 (d, J = 10.0 Hz, 1H, CH2Ph), 4.66 (d, J = 10.0 Hz, 1H, CH2Ph), 4.78 (d, J = 10.5 Hz, 1H, CH2Ph), 4.87 (dd, J = 11.0 Hz, 1H, CH2Ph), 4.89 (d, J = 2.3 Hz, 1H, 7-H), (d, J = 11.0 Hz, 1H, CH2Ph), 5.05 (d, J = 11.2 Hz, 1H, CH2Ph), 5.18 (d, J = 10.5 Hz, 1H, CH2Ph), 7.17–7.41 (m, 30H, arom. H), 13C NMR (75 MHz, CDCl3): δ = 13.6 (q, CH3), 43.1 (d, C-2), 57.6 (q, OMe), 69.0, 69.5 (2t, C-6, C-12), 73.6, 74.0, 74.3, 75.6, 75.7, 76.2 (6t, CH2Ph), 73.9, 74.8, 76.5, 78.2, 81.1, 83.4, 84.1 (7d, C-3, C-4, C-5, C-8, C-9, C-10, C-11), 103.8, 106.7, (2d, C-1, C-7), 128.1, 128.2, 128.3, 128.4, 128.4, 128.5, 128.6, 128.7, 128.9, 129.0, 129.1, 129.3, (30d, arom. C-H), 139.1, 139.5, 139.6, 139.8, 140.0, 140.1, (6 s, arom. C-CH2O); Elemental analysis(%) calcd for: C56H62O10 C 75.14, H 6.98; found: C 75.28, H 7.99; Mass (ESI-MS); m/z894.54(M)+.
:
1); [α]20D = +14.6 (c = 1.02 in CHCl3); IR (film): v = 3063, 3029, 2858, 1950, 1732, 1496, 1362, 1421,1312, 1100, 1027 cm−1; 1H NMR (300 MHz, CDCl3): δ = 1.75 (dddd, J = 10.4, 8.1, 2.8, 2.4 Hz, 1H, 2-H), 3.38 (ddd, J = 9.5, 3.5, 3.0 Hz, 1H, 5-H), 3.46 (s, 3H, OMe), 3.60 (dd, J = 9.5, 8.8 Hz, 1H, 4-H), 3.67 (dd, J = 11.9, 2.8 Hz, 1H, 7-H), 3.68 (dd, J = 11.9, 2.0 Hz, 1H, 7′-H), 3.70 (dd, J = 10.5, 3.5 Hz, 1H, 6-H), 3.71 (dd, J = 10.5, 3.0 Hz, 1H, 6′-H), 3.76 (dd, J = 10.4, 8.8 Hz, 1H, 3-H), 4.32 (d, J = 8.1 Hz, 1H, 1-H), 4.46 (d, J = 12.0 Hz, 1H, CH2Ph), 4.50 (d, J = 10.7 Hz, 1H, CH2Ph), 4.56 (d, J = 12.0 Hz, 1H, CH2Ph), 4.69 (d, J = 10.8 Hz, 1H, CH2Ph), 4.71 (d, J = 10.8 Hz, 1H, CH2Ph), 4.86 (d, J = 10.7 Hz, 1H, CH2Ph), 7.08–7.28 (m, 15H, arom. H); 13C NMR (75 MHz, CDCl3): δ = 31.5 (t, C-7), 47.5 (d, C-2), 57.1 (q, OMe), 68.8 (d, C-6), 73.4, 74.7, 75.4 (3t, CH2Ph), 74.9, 79.7, 79.8 (3d, C-3, C-4, C-5), 102.15 (d, C-1), 127.5, 127.7, 127.7, 128.3, 128.4, 128.4 (15d, arom. C-H), 137.9, 138.1, 138.2 (3 s, arom. C-CH2O); elemental analysis(%) calcd for C29H33BrO5: C 64.33, H 6.14; found: C 64.39, H 6.19; Mass (ESI-MS); m/z 563.23(M + Na)+.
:
1); [α]20D = +17.1 (c = 1.01 in CHCl3); IR (film): v = 3030, 2918, 1496, 1363, 1250,1100, 1086 cm−1; 1H NMR (300 MHz, CDCl3): δ = 2.20 (dddd, J = 10.8, 8.1, 2.6, 2.5 Hz, 1H, 2-H), 3.44 (s, 3H, OMe), 4.49 (ddd, J = 3.1, 2.3, 2.5 1H 5-H), 3.55 (dd, J = 12.3, 2.6 Hz, 2H, 7-H), 3.57 (dd, J = 12.3, 2.4 Hz, 2H, 7′-H), 3.63 (d, J = 10.8 1H, 3-H), 3.73 (dd, J = 10.0, 3.1 Hz, 1H, 6-H), 3.82 (dd, J = 10.0, 2.3 Hz, 1H, 6′-H), 3.88 (d, J = 2.5 Hz, 1H 4-H), 4.32 (d, J = 8.1 Hz, 1H, 1-H), 4.36 (d, J = 11.8 Hz, 1H, CH2Ph), 4.42 (d, J = 11.8 Hz, 1H, CH2Ph), 4.47 (d, J = 11.0 Hz, 1H, CH2Ph), 4.51 (d, J = 11.7 Hz, 1H, CH2Ph), 4.65 (d, J = 11.0 Hz, 1H, CH2Ph), 4.78 (d, J = 11.7 Hz, 1H, CH2Ph), 7.16–7.29 (m, 15H, arom. H);13C NMR (75 MHz, CDCl3): δ = 32.6 (dt C-7), 42.3 (d, C-2), 57.0 (q, OMe), 68.9 (d, C-6), 72.2, 73.5, 74.3 (3t, CH2Ph), 70.9, 73.4, 78.4 (C-3, C-4, C-5), 102.4 (C-1), 127.5, 127.7, 127.9, 128.0, 128.1, 128.4 (15d, arom. C-H), 37.7, 137.9, 138.6 (3 s, arom. C-CH2O); Elemental analysis(%) calcd for C29H33BrO5: C 64.33, H 6.14; found: C 64.36, H 6.21; Mass (ESI-MS); m/z 563.26(M + Na)+.
:
1); [α]20D = +9.6 (c = 1.01 in CHCl3); IR (film): v = 2915, 2842, 1455, 1454, 1368, 1202, 1178, 1091, 1077, 1022 cm−1; 1H NMR (300 MHz, CDCl3): δ = 1.68 (dddd, J = 9.8, 8.0, 3.0, 2.5 Hz, 1H, 2-H), 3.15 (dd, J = 11.6, 9.8 1H, 5-H), 3.42 (s, 3H, OMe), 3.58 (ddd, J = 10.2, 9.8, 5.0 Hz, 1H, 4-H), 3.62 (dd, 1H, J = 10.2, 9.8 Hz, 3-H), 3.65 (dd, J = 10.0, 3.0 Hz, 1H, 6-H), 3.71 (dd, J = 10.0, 2.5 Hz, 1H, 6′-H), 3.92 (dd, J = 11.6, 5.0 Hz, 1H, 5′-H), 4.28 (d, J = 8.0 Hz, 1H, 1-H), 4.54 (d, J = 11.5 Hz, 1H, CH2Ph), 4.60 (d, J = 11.5 Hz, 1H, CH2-Ph), 4.66 (d, J = 10.8 Hz, 1H, CH2Ph), 4.91 (d, J = 10.8 Hz, 1H, CH2Ph), 7.17–7.26 (m, 10H, arom. H); 13C NMR (75 MHz, CDCl3): 31.7 (t, C-7), 46.9 (d, C-2), 57.0 (q, OMe), 63.5 (t, C-5), 72.8, 75.3 (2t, CH2Ph), 78.5, 79.5 (3d, C-3, C-4), 102.6 (d, C-1), 127.7, 127.8, 127.9, 128.0, 128.4, 128.4 (10d, arom. C-H), 138.0, 138.4, (2 s, arom. C-CH2O); Elemental analysis(%) calcd for: C21H25BrO4 C 59.86, H 5.98; found: C 59.95, H 6.09; Mass (ESI-MS); m/z 420.16(M)+.
:
1); [α]20D = +25.2 (c = 1.02 in CHCl3); IR (film): v = 2920, 2832, 1448, 1444, 1362, 1211, 1188, 1084, 1076, 1028 cm−1; 1H NMR (300 MHz, CDCl3): δ = 1.68 (dddd, J = 12.8, 7.7, 2.3, 2.0 Hz, 1H, 2-H), 3.21 (d, J = 12.8 1H, 3-H), 3.45 (s, 3H, OMe), 3.56 (dd, J = 10.5, 1.8 Hz, 1H, 5-H), 3.58 (dd, J = 10.5, 2.0 Hz, 1H, 5′-H), 3.73 (dd, J = 10.0, 2.0 Hz, 1H, 6-H), 3.82 (dd, J = 10.0, 2.3 Hz, 1H, 6′-H), 4.06 (dd, J = 1.8, 2.0 Hz, 1H, 4-H), 4.23 (d, J = 7.8 Hz, 1H, 1-H), 4.36 (d, J = 11.0 Hz, 1H, CH2Ph), 4.48 (d, J = 11.0 Hz, 1H, CH2Ph), 4.54 (d, J = 12.30 Hz, 1H, CH2Ph), 4.69 (d, J = 12.30 Hz, 1H, CH2Ph), 7.19–7.31 (m, 10H, arom. H); 13C NMR (75 MHz, CDCl3): 32.5 (t, C-7), 42.5 (d, C-2), 56.9 (q, OMe), 63.3 (t, C-5), 71.1, 71.5 (2t, CH2Ph), 70.1, 76.5 (3d, C-3, C-4), 102.9 (d, C-1), 127.6, 127.8, 127.9, 128.0, 128.3, 128.4, (10d, arom. C-H), 137.8, 138.3 (2 s, arom. C-CH2O); Elemental analysis(%) calcd for: C21H25BrO4 C 59.86, H 5.98; found: C 59.88 H 6.01; Mass (ESI-MS); m/z420.13(M)+.
:
1); [α]20D = +13.8 (c = 1.02 in CHCl3); IR (film): v = 3045, 2948, 1837, 1751, 1648, 1497, 1481, 1331, 1210, 1152 cm−1; 1H NMR (300 MHz, CDCl3): δ = 1.73(dddd, J = 8.6, 6.5, 5.1, 3.6, Hz 1H, 2-H), 3.27(dd J = 6.3, 4.5 Hz, 1H, 6-H), 3.29 (dd, J = 7.2, 5.0 Hz, 1H, 12-H), 3.30 (dd, J = 6.3, 3.6 Hz, 1H, 6′-H), 3.33(dd, J = 7.2, 5.6 Hz, 1H, 12′-H), 3.44 (s, 3H, OMe), 3.46 (dd, J = 10.2, 6.5 Hz 1H, 3-H), 3.62(ddd J = 9.6, 4.5, 3.6 Hz, 1H, 5-H), 3.65(ddd, J = 8.9, 5.6, 5.0 Hz 1H, 11-H), 3.61 (dd, J = 2.1, 1.8 Hz, 1H, 10-H), 3.70(dd J = 9.8, 1.9 Hz, 1H, 9-H), 3.79 (dd, J = 10.8, 3.6 Hz, 1H, 13-H), 3.81 (dd, J = 10.8, 5.1 Hz, 1H, 13′-H), 3.95 (dd, J = 9.8, 9.2 Hz, 1H, 8-H), 4.16(d, J = 11.8 Hz, 1H CH2Ph), 4.26(d, J = 12.6 Hz, 1H, CH2Ph) 4.28 (d, J = 10.5 Hz, 1H, CH2Ph), 4.30 (d, J = 12.0 Hz, 1H, CH2Ph), 4.49 (dd, J = 10.2, 9.6 Hz, 1H, 4-H), 4.50(d, J = 9.2 Hz, 1H, 7-H), 4.60 (d, J = 12.6 Hz, 1H, CH2Ph), 4.65(d, J = 12.0 Hz, 1H CH2Ph), 4.69(d, J = 11.0 Hz, 1H, CH2Ph), 4.73(d, J = 11.5 Hz, 1H, CH2Ph), 4.77 (d, J = 11.8 Hz, 1H, CH2Ph), 4.90 (d, J = 11.5 Hz 1H CH2Ph), 5.15(d, J = 10.0 Hz, 1H, CH2Ph), 6.99–7.25 (m, 30H, arom. H), 13C NMR (125 MHz, CDCl3): δ = 31.8 (t, C-13), 47.2 (d, C-2), 56.9 (q, OMe), 68.1, 68.2 (2t, C-6, C-12), 72.6, 73.0, 73.0, 73.3, 74.6, 75.3 (6t, CH2Ph), 73.0, 73.1 73.8, 77.3, 77.9, 80.1, 82.5 (7d, C-3, C-4, C-5, C-8, C-9, C-10, C-11), 127.2, 127.3, 127.4, 127.5, 127.6, 127.8, 127.9, 128.1, 128.2, 128.3 (30d, arom. C-H), 138.1, 138.4, 138.5, 138.8, 138.9, 139.0 (6 s, arom. C-CH2O); Elemental analysis(%) calcd for: C56H61BrO10 C 69.06 H 6.31; found: C 69.34 H 6.38; Mass (ESI-MS); m/z 973.58(M)+.
:
1); [α]20D = +36.3 (c = 1.01 in CHCl3); IR (film): v = 3035, 2941, 1836, 1752, 1647, 1497, 1480, 1335, 1210, 1151 cm−1; 1H NMR (300 MHz, CDCl3): δ = 1.73 (dddd, J = 8.6, 6.5, 5.1, 3.6, Hz 1H, 2-H), 3.27 (dd J = 6.3, 4.5 Hz, 1H, 6-H), 3.29 (dd, J = 7.2, 5.0 Hz, 1H, 12-H), 3.30 (dd, J = 6.3, 3.6 Hz, 1H, 6′-H), 3.33(dd, J = 7.2, 5.6 Hz, 1H, 12′-H), 3.44 (s, 3H, OMe), 3.46 (dd, J = 10.2, 6.5 Hz 1H, 3-H), 3.62 (ddd J = 9.6, 4.5, 3.6 Hz, 1H, 5-H), 3.65 (ddd, J = 8.9, 5.6, 5.0 Hz 1H, 11-H), 3.61 (dd, J = 2.1, 1.8 Hz, 1H, 10-H), 3.70 (dd J = 9.8, 1.9 Hz, 1H, 9-H), 3.79 (dd, J = 10.8, 3.6 Hz, 1H, 13-H), 3.81 (dd, J = 10.8, 5.1 Hz, 1H, 13′-H), 3.95 (dd, J = 9.8, 9.2 Hz, 1H, 8-H), 4.16 (d, J = 11.8 Hz, 1H CH2Ph), 4.26 (d, J = 12.6 Hz, 1H, CH2Ph), 4.28 (d, J = 10.5 Hz, 1H, CH2Ph), 4.30 (d, J = 12.0 Hz, 1H, CH2Ph), 4.49 (dd, J = 10.2, 9.6 Hz, 1H, 4-H), 4.50 (d, J = 9.2 Hz, 1H, 7-H), 4.60 (d, J = 12.6 Hz, 1H, CH2Ph), 4.65 (d, J = 12.0 Hz, 1H CH2Ph), 4.69 (d, J = 11.0 Hz, 1H, CH2Ph), 4.73 (d, J = 11.5 Hz, 1H, CH2Ph), 4.77 (d, J = 11.8 Hz, 1H, CH2Ph), 4.90 (d, J = 11.5 Hz 1H CH2Ph), 5.15(d, J = 10.0 Hz, 1H, CH2Ph), 6.99–7.25 (m, 30H, arom. H), 13C NMR (125 MHz, CDCl3): δ = 31.9 (t, C-13), 47.2 (d, C-2), 57.1 (q, OMe), 68.0, 68.2 (2t, C-6, C-12), 72.6, 73.1, 73.4, 74.7, 75.2, 75.4 (6t, CH2Ph), 73.0, 73.7, 75.2, 77.33 78.0, 80.0, 82.4 (7d, C-3, C-4, C-5, C-8, C-9, C-10, C-11), 127.3, 127.4, 127.5, 127.5, 127.6, 127.9, 128.0, 128.2, 128.31, 128.3, (30d, arom. C-H), 138.1, 138.4, 138.5, 138.7, 138.8, 139.0 (6 s, arom. C-CH2O); Elemental analysis(%) calcd for: C56H61BrO10 C 69.06 H 6.31; found: C 69.44 H 6.42; Mass (ESI-MS); m/z 973.56(M)+.
Footnotes |
| † Electronic supplementary information (ESI) available. See DOI: 10.1039/c1ob06370g |
| ‡ Current address: Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14776 Potsdam & Freie Universität Berlin Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany |
| This journal is © The Royal Society of Chemistry 2012 |