Fabio
Bellina
*,
Cinzia
Chiappe
* and
Marco
Lessi
Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, 56126, Pisa, Italy. E-mail: bellina@dcci.unipi.it; cinziac@farm.unipi.it
First published on 1st November 2011
A series of new ionic liquids (ILs) based on trialkylglycerylphosphonium cations have been prepared starting from 3-chloropropane-1,2-diol or (2,2-dimethyl-1,3-dioxolan-4-yl)methanol, two compounds readily obtainable from glycerol (a widely available and cheap waste product). All the new phosphonium salts were characterized by NMR, IR and DSC, and their efficacy as polar additives in a typical base-promoted Baylis–Hillman reaction was also evaluated.
In order to overcome these difficulties, organic cations other than imidazolium have been suggested. Among them, phosphonium salts emerged as a very promising alternative to imidazolium analogues due to a superior thermal stability and an inertness in basic reaction media.8Phosphonium based ILs have been known since the 1980s,9 but they were scarcely used until 1990, when phosphines used as precursors became available on a large scale.10 Moreover, phosphonium-based ILs are generally insoluble and less dense than water, properties that may be useful during the work-up of the reaction mixtures.
Recently, in continuation of our studies on the synthesis and applications of new ILs starting from renewable sources,11 we became interested in preparing phosphonium-based ILs containing two vicinal hydroxyl groups. In particular, in this paper we report the preparation and the characterization of a new family of n-butyl- or n-octylphosphonium salts 1 and 2, respectively, starting from commercially avaliable trialkylphosphines (3) and 1-chloro-2,3-propandiol (4) or (2,2-dimethyl-1,3-dioxolan-4-yl)methanol (5), two derivatives of glycerol (Fig. 1).12 These new ILs have also been tested as additives in a typical Baylis–Hillman reaction, due to their stability in the basic reaction conditions.
![]() | ||
Fig. 1 Structures of new phosphonium-based ILs 1 and 2, and of their precursors 3, 4 and 5. |
Tributylphosphine (3a) was distilled and stored under Ar. Compounds 7a and 7b were prepared as reported in the literature.13 All the other commercially available precursors were used as received.
FT-IR (neat, cm−1): ;2958; 2931;2872; 1464;1382;
;
; 1H-NMR (300 MHz; DMSO; TMS):5.97 (s, 1H,O
), 5.24 (s, 1H,O
), 3.90 (m, 1H, HOC
), 3.38 (m, 2H,HOC
2), 2.35 (m, 8H, P+
2), 1.46 (m, 12H,
2CH3), 0.92 (t, J = 7.0 Hz, 9H, CH3).; 13C-NMR (75.4 MHz; DMSO; TMS): 66.6 (m,
HOH,
H2OH); 23.8 (d, J = 16 Hz; P+CH2
H2CH2CH3); 23.4 (d, J = 48 Hz, P+
H2CH(OH)CH2OH); 23.2 (d, J = 4 Hz; P+CH2CH2
H2CH3); 18.9 (d, J = 48 Hz, P+
H2CH2CH2CH3); 13,7; 31P-NMR (121.4 MHz, DMSO; H3PO4(aq, ext)): 34.2. C15H34ClO2P (312.86); calcd. C 57.59, H 10.95; found C 57.74, H 11.00.
FT-IR (neat, cm−1): ;
; 2961; 2876; 1458; 1415;
;
; 824; 1H-NMR (300 MHz; DMSO; TMS): 5.47 (d, J = 5.1 Hz, 1H, CHO
), 4.95 (t, J = 5.1 Hz, 1H, CH2O
), 3.84 (m, 1H, C
OH), 3.36 (m, 2H, C
2OH), 2.32 (m, 8H, P+C
2), 1.51 (m, 12H,
2
2), 0.92 (t, J = 7.1 Hz, 9H); 13C-NMR (75.4 MHz; DMSO; TMS): 67.0 (d, J = 6 Hz,
H2OH); 66.8 (d, J = 14 Hz,
HOH); 24.0 (d, J = 16 Hz, P+CH2
H2CH2CH3); 23.31 (d, J = 4, P+CH2CH2
H2CH3); 23.27 (d, J = 50 Hz, P+
H2CH(OH)CH2OH); 19.0 (d, J = 48, P+
H2CH2CH2CH3); 13.5; 31P-NMR (121.4 MHz, DMSO, H3PO4(aq, ext)): 34.3; −143.2 (ept, J = 710 Hz); 19F-NMR (282.2 MHz, DMSO, C6F6): −70.2 (d, J = 711 Hz). C15H34F6O2P2 (422.37); calcd C 42.65, H 8.11; found C 42.81, H 8.08.
FT-IR (neat, cm−1): ; 2961; 2935; 2875; 1466; 1384; 1046; 1029; 1H-NMR (300 MHz; DMSO; TMS): 5.42 (d, J = 5.2 Hz, 1H, CHO
), 4.92 (t, J = 5.4 Hz, 1H, CH2O
), 3.83 (m, 1H, C
OH), 3.36 (m, 2H, C
2OH), 2.26 (m, 8H, P+CH2), 1.45 (m, 12H, CH2CH2), 0.92 (t, J = 7.1 Hz, 9H, CH3); 13C-NMR (75.4 MHz; DMSO; TMS): 66.8 (m,
HOH,
H2OH); 24.0 (d, J = 16 Hz; P+CH2
H2CH2CH3); 23.3 (m, P+CH2CH2
H2CH3);23.2 (d, J = 50 Hz, P+
H2CH(OH)CH2OH); 19.0 (d, J = 48, P+
H2CH2CH2CH3); 13.7; 31P-NMR (121.4 MHz, DMSO, H3PO4(aq, ext)): 34.4; 19F-NMR (282.2 MHz, DMSO, C6F6): −147.9; −148.0. C15H34BF4O2P (364.21); calcd C 49.47, H 9.41; found C 49.53, H 9.44.
FT-IR (cm−1): ; 2965; 2938; 2877; 1467; 1347; 1178; 1133;
;
; 1H-NMR (300 MHz; DMSO; TMS): 5.44 (s, 1H, O
), 4.91 (s, 1H, O
), 3.84 (m, 1H, C
OH), 3.37 (m, 2H, C
2OH), 2.31 (m, 8H, P+CH2), 1.46 (m, 12H, CH2CH2), 0.92 (t, J = 7.1 Hz, 9H, CH3); 13C-NMR (75.4 MHz; DMSO; TMS): 120.1 (q, J = 322 Hz; CF3S(O2)); 66.9 (d, J = 6 Hz,
H2OH); 66.8 (d, J = 14 Hz,
HOH); 23.4 (d, J = 16 Hz, P+CH2
H2CH2CH3); 23.31 (d, J = 4, P+CH2CH2
H2CH3); 23.28 (d, J = 40 Hz, P+
H2CH(OH)CH2OH); 19.0 (d, J = 48, P+
H2CH2CH2CH3); 13.5; 31P-NMR (121.4 MHz, DMSO, H3PO4(aq, ext)): 34.4; 19F-NMR (282.2 MHz, DMSO, C6F6): −78.8. C17H34F6NO6PS2 (557.55); calcd C 36.62, H 6.15; found C 36.79, H 6.13.
FT-IR (neat, cm−1):; 2955; 2915; 2855; 1465; 1377; 1280;
;
; 1H-NMR (300 MHz; DMSO; TMS): 6.00 (s, 1H, OH), 5.23 (s, 1H, OH), 3.90 (m, 1H, C
OH), 3.38 (m, 2H,
2OH), 2.41 (m, 8H, P+C
2), 1.49 (m, 36H,
2-alk), 0.87 (m, 9H., CH3); 13C-NMR (75.4 MHz; DMSO; TMS): 66.6 (m,
H2OH,
HOH); 31.7; 30.6 (d, J = 16 Hz, P+CH2
H2CH2CH2-); 28.9; 28.7; 23.5 (d, J = 50 Hz,
H2CH(OH)CH2OH); 22.5; 21.2(d, J = 4.5 Hz, P+CH2CH2
H2CH2–); 19.1 (d, 47 Hz, P+
H2CH2CH2CH2-); 14.2; 31P δ (121.4 MHz; DMSO; H3PO4(aq, ext)): 34.2. C27H58ClO2P (481.17); calcd C 67.40, H 12.15; found C 67.62, H 12.19.
Mp = 48 °C; FT-IR (neat, cm−1): ; 2926; 2856; 1464; 1408; 1378;
;
; 832; 1H δ (300 MHz; DMSO; TMS): 5.33 (s, 1H, OH), 4.77 (s, 1H, OH), 3.85 (m, 1H,
OH), 3.38 (m, 2H,
2OH), 2.29 (m, 8H), 1.5 (m, 36H,
2-alk), 0.88 (t, J = 6.5 Hz, 9H); 13C-NMR (75.4 MHz; DMSO; TMS): 66.9 (d, J = 6 Hz,
H2OH); 66.7 (d, J = 14 Hz,
HOH); 31.9; 30.8 (d, J = 15 Hz, P+CH2
H2CH2CH2-); 29.1; 28.8; 23.3 (d, J = 50 Hz,
H2CH(OH)CH2OH); 22.7; 21.3 (d, J = 4 Hz, P+CH2CH2
H2CH2-); 19.2 (d, J = 47 Hz, P+
H2CH2CH2CH2-); 14.4; 31P-NMR (121.4 MHz, DMSO, H3PO4(aq, ext)): 35.8; −141.6 (hept, J = 709 Hz); 19F-NMR (282.2 MHz; DMSO; C6F6): −70.4 (d, J = 710 Hz). C27H58F6O2P2 (590.69); calcd C 54.90, H 9.90; found C 55.02, H 9.96.
FT-IR (neat, cm−1):; 2925; 2855; 1465; 1411; 1378; 1051; 1031; 1H-MNR (300 MHz; DMSO; TMS): 5.46 (s, 1H, OH), 4.98 (s, 1H, OH), 3.84 (m, 1H,
OH), 3.38 (m, 2H,
2OH), 2.33 (m, 8H, P+
2), 1.48 (m, 36H,
2-alk), 0.88 (t, J = 6.5 Hz, 9H, CH3); 13C-NMR (75.4 MHz; DMSO; TMS): 66.7 (m,
H2OH,
HOH); 31.8; 30.7 (d, J = 15 Hz, P+CH2
H2CH2CH2–); 29.0; 28.8; 23.3 (d, J = 50 Hz;
H2CH(OH)CH2OH); 22.6; 21.2 (d, J = 4 Hz, P+CH2CH2
H2CH2-); 19.1 (d, J = 47 Hz, P+
H2CH2CH2CH2-); 14.3; 31P-NMR (121.4 MHz; DMSO; H3PO4(aq, ext)): 35.9; 19F δ (282.2 MHz; DMSO; C6F6): −148.36; −148.41. C27H58BF4O2P (532.53); calcd C 60.90, H 10.98; found C 61.02, H 11.01.
FT-IR (neat, cm−1): 3509; 2927; 2858; 1465; 1409; 1348; 1179; 1134 1055; 1H-NMR (300 MHz; DMSO; TMS): 5.53 (s, 1H, OH), 5.05 (s, 1H OH), 3.83 (m, 1H, OH), 3.38 (m, 2H,
2OH), 2.36 (m, 8H, P+CH2), 1.47 (m, 36H, CH2-alk), 0.88 (t, J = 6.6 Hz, 9H, CH3); 13C-NMR (75.4 MHz; DMSO; TMS): 119.5 (q, J = 320 Hz, CF3S(O2)); 66.4 (d, J = 6 Hz,
H2OH); 66.2 (d, J = 14 Hz,
HOH); 31.3; 30.2 (d, J = 15 Hz, P+CH2
H2CH2CH2–); 28.5; 28.3; 22.8 (d, J = 50 Hz,
H2CH(OH)CH2OH); 22.1; 20.7 (d, J = 4.5 Hz, P+CH2CH2
H2CH2–); 18.6 (d, J = 47 Hz, P+
H2CH2CH2CH2-); 13.8; 31P-NMR (121.4 MHz; DMSO; H3PO4(aq, ext)): 34.3; 19F-NMR (282.2 MHz; DMSO; C6F6): −79.1. C29H58F6NO6PS2 (725.87); calcd C 47.99, H 8.05; found C 47.77, H 8.01.
FT-IR (cm−1): ; 2959, 2933; 2873; 1465; 1417; 1214; 1170; 1094; 1036;. 1H-NMR (300 MHz; DMSO; TMS): 5.43 (s, 2H, OH), 3.87 (s, 1H, C
OH), 3.44 (m, 1H), 3.30 (m, 1H), 2.08 (m, 8H, P+C
2), 1.44 (m, 12H, CH2CH2), 0.92 (t, J = 7.0 Hz, 9H, CH3);13C-NMR (75.4 MHz; DMSO; TMS): 66.7 (m,
H2OH,
HOH); 40.1; 23.9 (d, J = 16 Hz, P+CH2
H2CH2CH3); 23.32 (d, J = 50 Hz, P+
H2CH(OH)CH2OH); 23.30 (d, J = 4, P+CH2CH2
H2CH3); 18.9 (d, J = 48, P+
H2CH2CH2CH3); 13.8; 31P δ (121.4 MHz; DMSO; H3PO4(aq, ext)): 34.4. C16H37O5PS (372.50); calcd C 51.59, H 10.01; found C 51.51, H 9.97.
FT-IR (cm−1): 3339; 2959; 2932; 2872; 1599;1495; 1465; 1404;1383;1339;1217;1174; 1120; 1100; 1032; 1009; 1H-NMR (300 MHz; DMSO; TMS): 7.49 (d, J = 8.1 Hz, 2H, CH-Ar), 7.16 (d, J = 8.1, 2H, CH-Ar), 4.83 (s, 2H, OH), 3.83 (m, 1H, COH), 3.29 (m, 2H, C
OH), 2.33 (m, 8H, P+CH2), 1.49 (m, 12H, CH2CH2), 0.90 (t, J = 7.1 Hz, 9H, CH3); 13C-NMR (75.4 MHz; DMSO; TMS): 145.4; 137.7; 128.0; 125.4; 66.1 (m,
H2OH,
HOH); 23.3 (d, J = 16 Hz, P+CH2
H2CH2CH3); 22.7 (d, J = 50 Hz, P+
H2CH(OH)CH2OH); 22.6 (d, J = 4; P+CH2CH2
H2CH3); 20.7; 18.3 (d, J = 47, P+
H2CH2CH2CH3); 13.2; 31P δ (121.4 MHz; DMSO; H3PO4(aq, ext)): 34.4. C22H41O5PS (448.60); calcd C 58.90, H 9.21; found C 59.02, H 9.24.
A solution of compound 8c in a mixture of ethanol and water (2:
1) (100 mL) was warmed at 40 °C and 0.51 g (10% mol of H+) of Amberlyst 15 were then added. The reaction mixture was vigorously stirred at the same temperature and the evolution of the reaction was monitored by NMR. After 8 h the mixture was filtered on celite, concentrated at reduced pressure and dried at 70 °C for 18 h under high vacuum to give 12.10 g (100%) of 2e as a pale yellow liquid.
FT-IR (cm−1):; 2924; 2854; 1464; 1378; 1215; 1175;
; 1036;1H-NMR (300 MHz; DMSO; TMS): 5.24 (s, 2H), 3.87 (m, 1H), 3.42 (m, 2H), 2.51 (m, 11H), 1.43 (m, 36H), 0.87 (t, J = 7.1,9H); 13C δ (75.4 MHz; DMSO; TMS): 66.19 (m;
H2OH,
HOH); 31.3; 30.2 (d, J = 15 Hz, P+CH2
H2CH2CH2–); 28.5; 28.3; 22.9 (d, J = 50,
H2CH(OH)CH2OH); 22.1; 20.8 (d, J = 4 Hz,P+CH2CH2
H2CH2–); 18.6 (d, J = 47 Hz, P+
H2CH2CH2CH2–); 13.8; 31P δ (121.4 MHz; DMSO; H3PO4(aq, ext)): 34.3. C28H61O5PS (540.82); calcd C 62.18, H 11.37; found C 62.29, H 11.34.
Mp: 39 °C; FT-IR (cm−1): 3294; 2954; 2924; 2854; 1660; 1597; 1467; 1434; 1181; 1121; 1033: 1010; 1H δ (300 MHz; DMSO; TMS):7.50 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 4.57 (sb, 1H), 3.81 (m, 1H), 3.35 (m, 1H), 2.38 (m, 9H), 1.4 (m, 36H), 0.86 (t, J = 5.9 Hz, 9H); 13C δ (75.4 MHz; DMSO; TMS): 146.1; 138.3; 128.6; 126.2; 66.9 (m, H2OH,
HOH); 32.0; 38.9 (d, J = 15 Hz, P+CH2
H2CH2CH2–); 29.2; 28.9; 23.5 (d, J = 50 Hz,
H2CH(OH)CH2OH); 22.8; 21.4 (2C); 19.7 (d, J = 47 Hz, P+
H2CH2CH2CH2–); 14.6.31P δ (121.4 MHz, DMSO, H3PO4(aq, ext)): 34.4. C34H65O5PS (616.92); calcd C 66.19, H 10.62; found C 66.11, H 10.66.
Phosphonium salt | OH signals | Tm(°C)/ΔH(J g−1)c | Water Solubilityd | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y− | 1H-NMR (δ)a | FT-IR (cm−1)b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a DMSO-d6 used as solvent. The concentration of samples was 0.5 M for tributylphosphonium derivatives, 0.7 M for trioctylphosphonium derivatives; b The analysis was recorded neat; c Conditions: see experimental; d Solubility test are carried out at RT, using 20 mg of Il and 1 mL of water: y = soluble; l = low soluble; n = not soluble. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1a | Cl | 5.97; 5.24 | 3229 | n.d | y | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1b | PF6 | 5.47; 4.92 | 3579 | 52/19.4 | l | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1c | BF4 | 5.42; 4.92 | 3521 | n.d. | l | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1d | Tf2N | 5.44; 4.91 | 3525 | n.d. | n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1e | MsO | 5.43 (2H) | 3326 | n.d. | y | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1f | TsO | 4.83 (2H) | 3339 | n.d. | y | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2a | Cl | 6.00; 5.23 | 3238 | 40/18 | n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2b | PF6 | 5.33; 4.77 | 3572 | 48/46.2 | n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2c | BF4 | 5.46; 4.98 | 3514 | n.d. | n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2d | Tf2N | 5.53; 5.05 | 3509 | n.d. | n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2e | MsO | 5.24 (2H) | 3326 | n.d. | n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2f | TsO | 4.57 (2H) | 3294 | 39/19.9 | n |
Entrya | IL | Yield(%)b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a The reactions were run using 1.23 mmol of 9, 1.37 mmol of 10, 0.61 mol of DABCO and 0.123 mmol of a phosphonium salt at RT for 24 h. b Determined by 1H-NMR analysis using DABCO as internal standard. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | — | 41 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 1a | 64 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 1b | 60 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 1c | 66 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | 1d | 63 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | 1e | 60 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | 1f | 57 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | 2a | 54 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | 2b | 74 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | 2c | 66 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | 2d | 53 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | 2e | 44 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | 2f | 49 |
The crude reaction mixture of entry 9 in Table 2 was purified by flash chromatography and the characterization of the product, obtained with 75% yield as a colorless liquid, is in accordance with the literature.14
The experiments of Table 3 were carried out according to the protocol used for the reactions reported in Table 2.
Entrya | 9 (Eq.) | 10(Eq.) | DABCO (%mol) | IL (%mol) | T/°C | Yield (%)b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a The reactions were run for 24 h. b Calculated by 1H-NMR, using DABCO as internal standard. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | 1 | 1.1 | 50 | 10 | rt | 74 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 1 | 1.1 | 50 | 50 | rt | 51 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 1 | 1.1 | 100 | 10 | rt | 63 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 3 | 1 | 50 | 10 | rt | 79 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | 1 | 3 | 50 | 10 | rt | 57 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | 1 | 1.1 | 50 | 10 | 50 | 44 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | 3 | 11 | 50 | 10 | 50 | 65 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | 1 | 1.1 | 50 | 10 | 0 | 47 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | 3 | 1 | 50 | 10 | 0 | 62 |
![]() | ||
Scheme 1 Preparation of trialkyl(2,3-dihydropropyl)phosphonium chloride 1a and 2a. |
Phosphonium chlorides 1a and 2a were then converted into the corresponding hexafluorophosphates 1b and 2b, tetrafluoroborates 1c and 2c, and bistriflimides 1d and 2d using metathesis reactions (Scheme 2).
![]() | ||
Scheme 2 Metathesis reaction involving trialkyl(2,3-dihydropropyl)phosphonium chloride 1a and 2a. |
It is noteworthy to observe that the metathesis reactions involving 1a could be performed using water as the solvent, but the synthesis of trioctylphosphonium salts 2b–d required a solvent optimization due to the insolubility of 2a in H2O. Initially, the metathesis reactions involving 2a and NaBF4 or LiNTf2 were carried out in acetone, a solvent able to dissolve 2a but not the inorganic by-products (MCl).16 However, these reactions gave a mixture of products, as shown by 31P and 1H-NMR spectra of the crude reaction mixtures (Fig. 2). Besides the signals of the expected products 1c and 1d at 3.81 (CH), 3.42 and 3.29 ppm (CH2) in 1H spectrum and of a signal at 36.0 ppm in 31P-NMR (Fig. 2) groups of signals shifted downfield at 4.36 ppm (CH), 4.16 and 3.63 ppm (CH2) in 1H-NMR and a signal at 35.5 ppm in the 31P spectrum can be seen. In contrast, a single product (2b) was obtained when KPF6 was used as the reaction partner.
![]() | ||
Fig. 2 NMR spectra of the products arising from metathesis reactions of 2a in acetone. |
The electrospray mass (ESI-MS) analysis of the crude reaction mixure of 2c and 2d showed that the co-products of the reaction were the corresponding ketals 6a and 6b (Fig. 3), respectively arising from the reactions, probably catalyzed by Li+ or Na+ ions, of 2c and 2d with the solvent.17
![]() | ||
Fig. 3 Structures of ketals 6a and 6b. |
However, when the metathesis reaction of 2a was carried out in a 2:
1 mixture of ethanol and water the required product 2c and 2d were obtained with high chemical purity (Scheme 2).
The syntheses of mesylates 1e and 2e, and of the tosylates 1f and 2f were performed according to the reaction sequence depicted in Scheme 3, starting from commercially available 2,2-dimethyl-1,3-dioxolan-4-yl)methanol (5).
![]() | ||
Scheme 3 Preparation of trialkyl(2,3-dihydropropyl)phosphoniummesilates and tosylates1e–f and 2e–f, respectively. |
![]() | ||
Scheme 4 Baylis–Hillman reaction involving acetaldehyde (9) and ethylacrylate (10). |
In particular, the protected glycerol derivative 5 was converted into the mesylate (7a) or tosylate (7b), according to a known procedure.13 Crude 7a and 7b so obtained were then reacted with phosphines 3a or 3b, obtaining the phosphonium salts 8a–d. Finally, the required (2,3-dihydroxypropyl)phosphonium salts 1e–f and 2e–f resulted from the deprotection with Amberlyst 15® using a solvent mixture of EtOH and H2O (Scheme 3).18
It notable that phosphonium salts 8c and 8d gave 1H-NMR spectra very similar to that obtained for 6a and 6b (Fig. 3), which definitively confirmed the structures of these last compounds.
In particular, the values of the OH IR stretching is between 3220 and 3340 cm−1 for anions able to form hydrogen bonds (Cl, OTs, OMs), while with poor-coordinating anions (BF4, PF6, Tf2N) the corresponding OH stretching frequencies were blue-shifted due to the absence of any interaction with these anions. A similar trend was also observed by examining the 1H-NMR spectra, where chlorides 1a and 2a displayed chemical shifts at a lower field than those observed for the corresponding phosphonium salts containing less coordinating anions (such as 1b, c and 2b, c)
Finally, DSC data showed that all the newly prepared phosphonium salts have melting points significantly lower than 100 °C, and several of them do not display any solid phase transition until temperatures as low as −50 °C
The principal drawback of the synthetic protocols involving the B–H reaction is the long reaction time generally required to drive the reaction to completion. In fact, in order to obtain good yields days or weeks are required. For this reason several studies have been carried out using small amounts of polar solvents, and in particular the use of ionic liquids evidenced a general decrease of the reaction time.19,20 This positive effect has been attributed to a stabilization of zwitterionic intermediates exerted by polar additives. The presence of H-donors, indeed, has been postulated to be beneficial for the reaction speed, as demonstrated by computational studies.21 However, it is noteworthy that the use of imidazolium-based ionic liquids as additives for the B–H reaction generally gave rise to a low isolated yield of the B–H adduct, despite the increase observed in reaction speed, probably due to the low stability of this class of ionic liquids in the reaction conditions.22
Taking into account these considerations, it seems interesting to us to test the efficiency of our new phosphonium salts as additives in a typical B–H reaction. In particular, we studied the reaction between benzaldehyde (9) and ethyl acrylate (10) in the presence of DABCO as the catalyst (Scheme 4).
The reaction was carried out using 1 equiv. of 9, 1.1 equiv. of 10, 50 mol% DABCO and 10 mol% of a phosphonium salt for 24 h (Table 2).
Data from Table 2 shows that the use of a glycol-based phosphonium salt generally leads to an increase in the yield of the B–H reaction between aldehyde 9 and acrylate 10 (compare entry 1 with entries 2–13, Table 2). In particular, when tributylphosphonium salts are used as additives, invariably higher chemical yields resulted than those observed in the absence of the ILs (entries 2–7, Table 2). In contrast, the yields of the reactions involving trioctyl phosphonium salts seem to depend on the nature of the counteranion (entries 8–13, Table 2). Specifically, high yields were obtained with octylphosphonium salts containing non-coordinating anions (PF6, BF4) (entries 9 and 10, Table 2), while when ILs containing a coordinating anion (such as Cl, OMs, or OTs) were used the yields resulting were only slightly higher than those observed when the reaction was performed in the absence of any additive (compare entries 8, 12 and 13 with entry 1, Table 2).
The best result was observed when trioctyl(2,3-dihydroxypropyl)phosphonium hexafluorophosphate 2b was used as the additive; in fact, the required B–H adduct ethyl 2-(hydroxy(phenyl)methyl)acrylate (11) was isolated in 74% yield after 24 h at room temperature.
In order to optimize the reaction conditions, we then set up a study on the influence of the reaction temperature and the molar ratio of the reagents on the efficiency of the B–H reaction, using 2b as the additive (Table 3).
From this study it emerged that the efficiency of the reaction may be improved when a molar excess of aldehyde (3 equiv.) was employed (entry 4, Table 3), while an increase in the amount of DABCO (entry 3, Table 3) or of 2b (entry 2, Table 3) led to lower yields. Similarly, a negative effect was observed when the reaction temperature was raised to 50 °C (entries 6 and 7, Table 3).
This journal is © The Royal Society of Chemistry 2012 |