Issue 83, 2014

Processability, structural evolution and properties of melt processed biaxially stretched HDPE/MWCNT nanocomposites

Abstract

Biaxial stretching of melt mixed high density polyethylene (HDPE)/multiwalled carbon nanotube (MWCNT) nanocomposites was conducted in the melt state at different stretching ratios (SRs). The addition of MWCNTs leads to significant strain hardening in the HDPE, greatly improving the stability and thus processability of the stretching process. Scanning electron microscopy shows that the MWCNTs in the polymer matrix are gradually disentangled and randomly oriented in the stretching plane with increasing SRs. All the stretched samples exhibit an increase in crystallinity (about 10%) due to strain induced crystallization and a broadened distribution of crystallite size according to the XRD and DSC results. The mechanical properties of the composites improve with increasing SRs, while they drop off after a SR of 2.5 for the neat HDPE which is likely to be due to the relaxation of polymer chains prior to solidification. The presence of the MWCNTs appears to inhibit this relaxation thus helping to maintain the orientation and mechanical properties at high SRs. The modulus, yield strength and breaking strength of stretched composites with 8 wt% MWCNTs increase by approximately 54%, 85% and 193% respectively compared with the neat HDPE at a SR of 3. The electrical percolation threshold for the unstretched material occurs at 1.9 wt% MWCNTs. As SR increases, the values of critical concentration increase from 1.9 wt% to 4.9 wt% implying the destruction of conductive networks due to an increased inter-particle distance. A loading of 6 wt% MWCNTs is sufficient to ensure that the sheet conductivity is robust to changes in the SR. Decreased values of critical exponent from 1.9 to 1.1 and morphological investigation reveal a transformation of the system structure from three dimensional to two dimensional as SR increases.

Graphical abstract: Processability, structural evolution and properties of melt processed biaxially stretched HDPE/MWCNT nanocomposites

Article information

Article type
Paper
Submitted
16 Jul 2014
Accepted
10 Sep 2014
First published
10 Sep 2014

RSC Adv., 2014,4, 44130-44140

Author version available

Processability, structural evolution and properties of melt processed biaxially stretched HDPE/MWCNT nanocomposites

D. Xiang, E. Harkin-Jones and D. Linton, RSC Adv., 2014, 4, 44130 DOI: 10.1039/C4RA07166B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements