Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 35, 2017, Issue in Progress
Previous Article Next Article

Natural gas regeneration of carbonate melts following SO2 capture from non-ferrous smelter emissions

Author affiliations

Abstract

Sulfur emission in the form of SO2 in flue gases is the one of the most serious atmospheric pollutants associated with coal combustion and non-ferrous metal production. The carbonate eutectic method for removing SO2 from flue gases at 723–923 K was initially proposed in the 1970's but despite its great efficiency (SO2 concentration in the flue gas after purification reached 0.003 vol%) it could not be implemented by industry due to the complexity of the carbonate melt regeneration stage. Earlier we proposed a method suited to coal-firing power stations where the melt was regenerated using CO as a reducing agent. However, most metallurgical plants do not use coal and therefore lack a large source of CO. Here we propose a method for removing sulfur from the carbonate eutectic melt by purging it with natural gas or a natural gas/air mixture, which are available in the vast majority of metallurgical plants. This reaction leads to the reduction of sulfate to H2S gas that leaves the melt. The experiments we conducted show that nearly complete sulfur removal from the melt is possible at 823 K and that the reaction rate is sufficiently high for a large scale process. The proposed modifications provide solutions to two major problems previously encountered: (i) high temperature corrosion of the reaction cell can be avoided, since a stainless steel cell with high chromium content is stable with respect to the carbonate eutectic melt at 823 K, and (ii) removal of sulfur in the form of H2S provides considerable freedom in choosing the final industrially useful product: either sulfuric acid, using H2S dry combustion, or elemental sulfur via the Claus process. One can foresee that this carbonate melt-based SO2 removal technique may become a practical and economically attractive method for limiting sulfur emission to the atmosphere from non-ferrous metallurgical processing plants.

Graphical abstract: Natural gas regeneration of carbonate melts following SO2 capture from non-ferrous smelter emissions

Back to tab navigation

Article information


Submitted
01 Mar 2017
Accepted
06 Apr 2017
First published
18 Apr 2017

This article is Open Access

RSC Adv., 2017,7, 21406-21411
Article type
Paper

Natural gas regeneration of carbonate melts following SO2 capture from non-ferrous smelter emissions

N. Dosmukhamedov, V. Kaplan, Y. Zholdasbay, E. Wachtel and I. Lubomirsky, RSC Adv., 2017, 7, 21406
DOI: 10.1039/C7RA02534C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements