Issue 12, 2011

Identifying charge and mass transfer resistances of an oxygen reducing biocathode

Abstract

In this study, we identified mass and charge transfer resistances for an oxygen reducing biocathode in a microbial fuel cell (MFC) by electrochemical impedance spectroscopy (EIS). The oxygen reducing biocathode was grown using nitrifying sludge as the inoculum. A standard model for charge transfer at the electrode surface combined with diffusion across a boundary layer was used. EIS measurements were performed under variation of both linear flow velocities and cathode potentials. Fitting the impedance data to the standard model at constant potential and different flow rates confirmed that increasing flow rate had no effect on charge transfer resistance, but led to a decrease in mass transfer resistance. From the variation in cathode potential at constant flow rate, a minimum in charge transfer resistance was found at 0.28 V vs.Ag/AgCl. The minimum in charge transfer resistance could be explained by the combined biochemical and electrochemical kinetics typical for bioelectrochemical systems.

Graphical abstract: Identifying charge and mass transfer resistances of an oxygen reducing biocathode

Article information

Article type
Paper
Submitted
13 Jul 2011
Accepted
16 Sep 2011
First published
19 Oct 2011

Energy Environ. Sci., 2011,4, 5035-5043

Identifying charge and mass transfer resistances of an oxygen reducing biocathode

A. Ter Heijne, O. Schaetzle, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, D. P. B. T. B. Strik, F. Barrière, C. J. N. Buisman and H. V. M. Hamelers, Energy Environ. Sci., 2011, 4, 5035 DOI: 10.1039/C1EE02131A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements