Can we test geoengineering?
Abstract
Solar radiation management (SRM), a form of geoengineering, might be used to offset some fraction of the anthropogenic radiative forcing of climate as a means to reduce climate change, but the risks and effectiveness of SRM are uncertain. We examine the possibility of testing SRM through sub-scale deployment as a means to test models of climate response to SRM and explore risks prior to full-scale implementation. Contrary to some claims, this could provide meaningful tests of the climate's response to SRM within a decade. We use idealized simulations with the HadCM3L general circulation model (GCM) to estimate the response to SRM and signal-to-noise ratio for global-scale SRM forcing tests, and quantify the trade-offs between duration and intensity of the test and it's ability to make quantitative measurements of the climate's response to SRM forcing. The response at long time-scales would need to be extrapolated from results measured by a short-term test; this can help reduce the uncertainty associated with relatively rapid climate feedbacks, but uncertainties that only manifest at long time-scales can never be resolved by such a test. With this important caveat, the transient climate response may be bounded with 90% confidence to be no more than 1.5 °C higher than it's estimated value, in a single decade test that used roughly 1/10th the radiative forcing perturbation of a CO2-doubling. However, tests could require several decades or longer to obtain accurate response estimates, particularly to understand the response of regional hydrological fields which are critical uncertainties. Some fields, like