Issue 12, 2011

Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation

Abstract

A cobalt-phosphate based oxygen evolution catalyst (Co-Pi OEC) was electrochemically deposited onto the surface of a porous bismuth vanadate electrode doped with 2 atom% Mo (BiV0.98Mo0.02O4). The porous BiV0.98Mo0.02O4electrode was prepared using a surfactant assisted metal–organic decomposition technique at 500 °C. The comparison of the photocurrent–voltage characteristics of the BiV0.98Mo0.02O4electrodes with and without the presence of Co-Pi catalyst demonstrated that the Co-Pi catalyst enhanced the anodic photocurrent of the BiV0.98Mo0.02O4electrode with its effect more pronounced at lower potentials. A stable photocurrrent density of 1.0 mA cm−2 at 1.0 V vs.Ag/AgCl was achieved under standard AM 1.5 illumination using 0.5M Na2SO4 aqueous solution in phosphate buffer at pH7. Relative to the BiV0.98Mo0.02O4electrode, a sustained enhancement, nearly doubled photocurrent density was observed at 1.0 V vs.Ag/AgCl for Co-Pi/BiV0.98Mo0.02O4 composite photoelectrode. Significant performance gains are obtained on BiV0.98Mo0.02O4electrodes upon modification with Co-Pi water oxidation catalyst.

Graphical abstract: Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2011
Accepted
16 Sep 2011
First published
20 Oct 2011

Energy Environ. Sci., 2011,4, 5028-5034

Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation

S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, Energy Environ. Sci., 2011, 4, 5028 DOI: 10.1039/C1EE02444B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements