Issue 9, 2015

Nitrite ion sensing properties of ZnTiO3–TiO2 composite thin films deposited from a zinc–titanium molecular complex

Abstract

A titanium based heterobimetallic molecular precursor, [Zn2Ti4(μ-O)6(TFA)8(THF)6]·THF (1) (where TFA = trifluoroacetato; THF = tetrahydrofuran), has been designed and scrutinised for its various physicochemical properties by melting point analysis, microanalysis, Fourier transform infra-red spectroscopy, proton nuclear magnetic resonance spectroscopy, thermogravimetry and single crystal X-ray structural analysis. ZnTiO3–TiO2 composite thin films were grown on a fluorine doped tin oxide (FTO) coated conducting glass substrate at 550 °C from three different solutions of (1) viz. methanol, THF and acetonitrile, by the aerosol-assisted chemical vapour deposition technique. The phase identification, chemical composition and microstructure of the fabricated thin films that were probed by powder X-ray diffraction, Raman spectroscopy, energy dispersive X-ray analysis and scanning electron microscopy revealed the formation of a 1 : 1 ratio of ZnTiO3 : TiO2 composite microspheres of diverse designs and textures depending on the type of deposition solvent used. The direct band gap energy of 3.1 eV was estimated by UV-visible spectrophotometry of the ZnTiO3–TiO2 film fabricated from methanol solution and the film electrode was further tested as an electrochemical sensor for the detection of nitrite ions.

Graphical abstract: Nitrite ion sensing properties of ZnTiO3–TiO2 composite thin films deposited from a zinc–titanium molecular complex

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2015
Accepted
21 Jul 2015
First published
23 Jul 2015

New J. Chem., 2015,39, 7442-7452

Author version available

Nitrite ion sensing properties of ZnTiO3–TiO2 composite thin films deposited from a zinc–titanium molecular complex

M. A. Ehsan, H. Khaledi, A. Pandikumar, P. Rameshkumar, N. M. Huang, Z. Arifin and M. Mazhar, New J. Chem., 2015, 39, 7442 DOI: 10.1039/C5NJ00850F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements