Issue 45, 2023

A state-of-the-art liposome technology for glioblastoma treatment

Abstract

Glioblastoma (GBM) is a challenging problem due to the poor BBB permeability of cancer drugs, its recurrence after the treatment, and high malignancy and is difficult to treat with the currently available therapeutic strategies. Furthermore, the prognosis and survival rate of GBM are still poor after surgical removal via conventional combination therapy. Owing to the existence of the formidable blood–brain barrier (BBB) and the aggressive, infiltrating nature of GBM growth, the diagnosis and treatment of GBM are quite challenging. Recently, liposomes and their derivatives have emerged as super cargos for the delivery of both hydrophobic and hydrophilic drugs for the treatment of glioblastoma because of their advantages, such as biocompatibility, long circulation, and ease of physical and chemical modification, which facilitate the capability of targeting specific sites, circumvention of BBB transport restrictions, and amplification of the therapeutic efficacy. Herein, we provide a timely update on the burgeoning liposome-based drug delivery systems and potential challenges in these fields for the diagnosis and treatment of brain tumors. Furthermore, we focus on the most recent liposome-based drug delivery cargos, including pH-sensitive, temperature-sensitive, and biomimetic liposomes, to enhance the multimodality in imaging and therapeutics of glioblastoma. Furthermore, we highlight the future difficulties and directions for the research and clinical translation of liposome-based drug delivery. Hopefully, this review will trigger the interest of researchers to expedite the development of liposome cargos and even their clinical translation for improving the prognosis of glioblastoma.

Graphical abstract: A state-of-the-art liposome technology for glioblastoma treatment

Article information

Article type
Review Article
Submitted
23 Aga 2023
Accepted
22 Okt 2023
First published
08 Nov 2023

Nanoscale, 2023,15, 18108-18138

A state-of-the-art liposome technology for glioblastoma treatment

I. Hasan, S. Roy, E. Ehexige, R. Wu, Y. Chen, Z. Gao, B. Guo and C. Chang, Nanoscale, 2023, 15, 18108 DOI: 10.1039/D3NR04241C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements