Lingjun
Zhu†
a,
Ce
Hu†
a,
Jialu
Chen
b and
Bin
Jiang
*a
aSchool of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail: bjiangch@ustc.edu.cn
bDepartment of Physics, City University of Hong Kong, Hong Kong, SAR, People's Republic of China
First published on 19th January 2023
As a prototypical system for studying the Eley–Rideal (ER) mechanism at the gas–surface interface, the reaction between incident H/D atoms and pre-covered D/H atoms on Cu (111) has attracted much experimental and theoretical interest. Detailed final state-resolved experimental data have been available for about thirty-years, leading to the discovery of many interesting dynamical features. However, previous theoretical models have suffered from reduced-dimensional approximations and/or omitting energy transfer to surface phonons and electrons, or the high cost of on-the-fly ab initio molecular dynamics, preventing quantitative comparisons with experimental data. Herein, we report the first high-dimensional neural network potential (NNP) for this ER reaction based on first-principles calculations including all molecular and surface degrees of freedom. Thanks to the high efficiency of this NNP, we are able to perform extensive quasi-classical molecular dynamics simulations with the inclusion of the excitation of low-lying electron–hole pairs (EHPs), which generally yield good agreement with various experimental results. More importantly, the isotopic and/or EHP effects in total reaction cross-sections and distributions of the product energy, scattering angle, and individual ro-vibrational states have been more clearly shown and discussed. This study sheds valuable light on this important ER prototype and opens a new avenue for further investigations of ER reactions using various initial conditions, surface temperatures, and coverages in the future.
The dynamical features of various ER/HA processes have been investigated by a large body of experiments.7–19 For example, Kuipers et al.8 showed that a hyperthermal N(C2H4)3N molecule directly scattered from hydrogen-covered Pt (111) can be protonated, leaving with a kinetic energy strongly dependent on the incident energy thereof. Rettner9 found that the angular distribution of the HD is asymmetrical with respect to the surface normal and displays a dependence on the incidence energy when H(D) atoms collide with D(H) + Cu (111). ER/HA reactions could also lead to a high internal energy distribution in products as a result of a larger exothermicity than LH reactions, for example, the vibrational state distribution of HCl peaks at its first excited state in the reaction of the incident H atom with pre-adsorbed Cl–Au (111).7,10,14 More recently, Zaharia et al.19 observed the ER mechanism between two heavy species, namely the gaseous nitrogen atom and the O atom adsorbed on Ru (0001). Quan et al.20 further revealed the vibrational effect in an ER reaction involving a polyatomic projectile, where the vibrational excitation of the incident CO2 molecule can remarkably promote its association with pre-covered H atoms on Cu surfaces.
Among these examples, the ER reaction between gaseous and pre-covered hydrogen atoms on Cu (111) serves as one of the simplest representatives and is thus of great experimental and theoretical interests.9,11–13,21–26 Experimentally, Rettner and Auerbach13 measured the total abstraction cross-section for this reaction of ∼5.2 ± 1.3 Å2 per atom, which is almost independent of the isotopic substitution and the coverage. The resulting molecular hydrogen products were found with high translational, vibrational, and rotational excitations, resulting from the large exothermicity. In addition, a strong isotope effect appeared in the angular and vibrational state distributions.13 On the theoretical side, earlier dynamical calculations on the ER/HA recombination of H2 largely relied on potential energy surfaces (PESs) parameterized with empirical functions. For example, low-dimensional quantum dynamical models with empirical PESs of the London–Eyring–Polanyi–Sato (LEPS) function were first applied by Kratzer and Brenig21 and later extended by Jackson and Persson22 within a flat-surface approximation. Dai and Light23 considered the corrugation of the rigid surface in a four-dimensional quantum model on a LEPS PES. With a modified LEPS PES and an embedded atom method-based expression accounting for surface degrees of freedom (DOFs),25 Vurdu et al.24,25 performed extensive quasi-classical trajectory (QCT) calculations on this ER reaction on a realistic Cu (111) surface at different surface temperatures.
In recent years, dynamical calculations have been more frequently carried out with first-principles determined PESs, for instance, for studying the ER reactions of H with H + W (110) or W (100) and N with N + Ag (111).27–33 However, surface DOFs have been neglected in these PESs, although the energy transfer to surface phonons and/or electron–hole pairs (EHPs) was in several cases described by approximate models. To deal with such high-dimensional problems, the ab initio molecular dynamics (AIMD) method, in which energies and forces are computed on-the-fly by density functional theory (DFT), has been employed for studying the ER, HA, or hyperthermal H atom collisional processes.34–38 Based on AIMD simulations associated with an electronic friction (EF) theory39,40 within the local density friction approximation (LDFA)41 (referred to as the AIMDEF42 method hereafter), Zhou et al.37 discussed the respective effect of surface phonon and low-lying EHP excitations during the ER reaction between impinging H atoms and Cl atoms adsorbed on Au (111). But their impact on the reactivity and final state distributions was found to be limited. However, Alducin and coworkers found that in the ER recombination of H2 on tungsten surfaces, HA abstraction cross-sections are drastically reduced at low incident energies and low coverage due to energy loss to EHPs, while the effect on the ER reactivity is negligible.30,31,33 Using the same method, some of us38 identified the importance of including the EHP effects in quantitatively reproducing the measured reaction cross-sections and product translational energy distributions for D(H) + H(D)/Cu (111) ER reactions. Nevertheless, limited by the high computational cost, only a few hundreds of AIMD trajectories were typically affordable, rendering noticeable statistical errors in dynamics results. Moreover, some minor probability channels, e.g. individual rotational states of the product, cannot be well captured by AIMD.
Recent advances in atomistic neural network (AtNN)-based approaches have shown great promise in constructing high-dimensional PESs with surface DOFs for studying the gas–surface dynamics from first principles at affordable costs.43,44 Such PESs, once well-trained, will allow efficient calculation of a larger number of trajectories at the same level of accuracy as AIMD with merely about ten to hundred thousandth of cost. There have been successful applications of AtNN to molecular adsorption and desorption on metal surfaces.45–49 One example relevant to the present system is a universal PES for describing H2 dissociation on multiple copper surfaces, which accurately reproduced measured dissociative sticking probabilities for H2 dissociation on multiple copper surfaces under different conditions.50 However, the PES for an ER reaction needs to cover a larger configuration space where the two reactive species are well separated (one in the gas phase and the other on the surface) and the highly energetic gaseous atom may penetrate into the surface.
In this work, we report the first high-dimensional AtNN PES for the titled ER reaction, taking advantage of numerous data points generated by previous AIMD(EF) simulations.38 Additionally, the electron density of the metal surface is also fitted to an AtNN representation as a function of spatial position, allowing us to simulate the effects of EHP excitation by the EF model within LDFA. QCT(EF) calculations on this new PES not only well reproduce the AIMD(EF) results with much better statistics but also predict the rotational state distributions of each vibrational state. A majority of experimental data are well reproduced and the remaining discrepancies between theory and experiments are discussed.
AIMD(EF) simulations have been performed in our previous work using this setup.38 To model experimental conditions as much as possible, the incident H or D atom was initiated at 5.0 Å above the surface with a mean incident energy of 0.07 eV and an incidence angle of 10.0° about the surface normal. The surface configurations were sampled at the temperature of 100 K. Three hundred trajectories were propagated in each of four conditions with a time step of 1 fs and a maximum simulation time of 1 ps, namely incident H(D) atom hitting on the pre-covered D*(H*) atoms (referred as H-on-D (D-on-H) hereafter, respectively), with or without electron friction. A total of 728
015 data points were generated with both energies and forces available for the fitting.
![]() | (1) |
![]() | (2) |
| φ(rij) = xlxylyzlz exp(−α|r − rm|2) | (3) |
A total of 11
851 points were selected from 1200 AIMD(EF) trajectories reported in ref. 38 based on a generalized Euclidian distance criterion for the bond distance (1 Å) and for the atomic force (0.3 meV Å−1), respectively. Such criteria effectively filter out similar structures in these trajectories.46 Nine tenths of data points were used for training and the rest for validation. The hyperparameters of GTO are as follows: L = 0, 1, and 2; rc = 6.2 Å; α = 0.8 Å−2; and rm = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, and 6.0 Å, resulting in 39 EAD features. Each ANN consists of two hidden layers with 40 and 60 neurons in each layer.
, where vs is the stream velocity and α characterizes the width of the velocity distribution. The incident angle (θin) was taken as 10° relative to the surface normal, and the incident azimuthal angle and the impact position in the unit cell were randomly sampled. The two hydrogen atoms were placed at two favorable fcc sites. Note that the three top layers of the metal surface including the pre-adsorbed H(D) were allowed to relax. The initial velocities and configurations of surface and pre-adsorbed atoms were taken from molecular dynamics trajectories sampled according to the Andersen thermostat69 with a target surface temperature Ts = 100 K. No thermostat was imposed when simulating the collisional process.
In order to take the nonadiabatic energy dissipation channel into account, the EF model based on LDFA41 was employed. In this LDFA-based EF model, an electronic friction force is introduced as the feedback of fast electrons to the slow nuclear motion, resulting in a generalized Langevin equation,41
![]() | (4) |
The friction coefficient of H(D) for a given electron density has been tabulated elsewhere.70 Since the upper three metal layers are movable, the surface motion would change the electron density.71 To capture this, we constructed another EANN model to approximate the relationship between embedded electron density and the position of the embedded atom above the mobile surface, i.e., electron density surface (EDS), as has been recently done for NO on Au (111)72 and H2O on Pt (110)-(1 × 2).64 In this respect, the EDS formally amounts to the PES of a pseudo atom adsorbed on this surface. Specifically, six hundred distinct Cu (111) surface configurations were selected from AIMD trajectories of the clean surface at Ts = 100 K, and the corresponding electron densities in the three-dimensional space were saved for each configuration. The hyperparameters of the EANN EDS include L = 0, 1, and 2; rc = 4.1 Å; α = 0.99 Å−2; rm = 0.00, 0.45, 0.90, 1.35, 1.80, 2.25, 2.70, 3.15, 3.60, 4.05 Å; and 50/50 neurons in the first/second hidden layer. As the electron density varies mildly with the atomic position, this EANN EDS reproduced the DFT calculated electron densities (ranging from 0.0198 e Å−3 to 1.88 e Å−3) very well, with an extremely low root-mean-square-error (RMSE) of 3.66 × 10−5 e Å−3.
In dynamics calculations, each trajectory was propagated with a time step of 0.05 fs via the velocity Verlet algorithm and the longest propagation time was 1 ps. A trajectory was regarded as reactive if one of the absorbed D(H) atoms is abstracted by the impinging H(D) atom or the other absorbed atom to form a molecule desorbing away from the surface up to 5.0 Å above the top layer. The reaction can take place either via a so-called HA mechanism,6 in which the impinging atom does not collide with the adsorbate directly, or a direct ER mechanism, in which the product is generated by a single bounce between the impinging atom and the adsorbate. The HA mechanism was identified in the following cases: (a) the incident atom reaches 1.2 Å above the surface with a distance larger than 2.0 Å to any pre-adsorbates and thus becomes a hot adatom; (b) the distance between this hot adatom and the pre-adsorbate stretches back and forth for more than once before forming a molecule. A non-reactive trajectory was regarded as scattering if the incident atom is directly reflected to the vacuum, whereas it is considered to be sticking if the incident atom remains staying on the surface after 1 ps. The Einstein–Brillouin–Keller (EBK) method73 was performed to determine the vibrational action number (v) of the formed molecule semi-classically, via
, where pr is the relative momentum along the molecular bond. In addition, rotational quantum numbers were calculated by the rotational angular momentum of diatomic molecules. Finally, the vibrational and rotational distributions of the product were determined using the histogram binning method. This quasi-classical treatment allows the analysis of the final state distribution of the ER products for comparison with experiments.
We note that the high efficiency of the EANN PES enables much faster QCT simulations than on-the-fly AIMD simulations. The average wall-time for running a QCT trajectory is ∼0.056 s per step per CPU core, compared with ∼625 s per step per core for an AIMD trajectory with the same Intel Xeon Gold 6132 CPU, exhibiting an acceleration of roughly five orders of magnitude. To obtain statistically converged results, a total of 50
000 trajectories were propagated in each condition, i.e., incident H(D) atom hitting on the pre-adsorbed D(H) atoms [labeled as H-on-D (D-on-H) hereafter], without or with electron friction, corresponding to QCT and QCTEF results, respectively.
| Configuration | r 12 (Å) | Z 12 (Å) | θ 12 (°) | Z 3 (Å) | E (eV) |
|---|---|---|---|---|---|
| H(g) + 2H(a) | — | — | — | 0.91 (0.92) | 0.000 (0.000) |
| H(a) + 2H(a) | 2.62 (2.62) | 0.88 (0.87) | 90.0 (90.0) | 0.88 (0.87) | −2.536 (−2.538) |
| TS | 1.06 (1.05) | 1.17 (1.17) | 86.3 (86.3) | 0.95 (0.95) | −1.694 (−1.699) |
| H2(a) + H(a) | 0.75 (0.75) | 3.93 (3.92) | 66.6 (66.7) | 0.96 (0.97) | −2.445 (−2.453) |
| H2(g) + H(a) | 0.75 (0.75) | — | — | 0.96 (0.96) | −2.375 (−2.371) |
In addition, Fig. 1b shows the two-dimensional cut of the PES as a function of the height of the H1–H2 centroid above the surface (Z12) and the bond length of H1–H2 (r12), representing the dissociative adsorption of H2 on Cu (111). The EANN PES reproduces quite well these evenly distributed grid points directly calculated by DFT (not included in the training data). Note that there is a shallow well at r12 ∼ 2.5 Å and Z12 ∼ 0 Å, corresponding to one of hydrogen atoms penetrating into the surface. On the other hand, Fig. 2 clearly shows the ER channel by a two-dimensional energy contour plot with respect to the height of H1 and H2 above the surface with the H1–H2 centroid fixed at the fcc site. A representative ER trajectory is projected onto this contour plot to illustrate how the ER reaction takes place. Following this trajectory, the incident hydrogen (H1) gradually approaches the surface and abstracts the adsorbed hydrogen (H2) to form the H2 molecule, which escapes from the surface with large exothermicity.
![]() | ||
| Fig. 2 Two-dimensional energy contour plot for showing the ER and exchange channels (corresponding structures illustrated by insets) as a function of ZH1 (distance between the surface and H1) and ZH2 (distance between the surface and H2). A representative ER trajectory is projected onto this contour plot by red dots. The energy zero is the same as that shown in Fig. 1. | ||
| Outcome | H-on-D | D-on-H | Expt. | ||
|---|---|---|---|---|---|
| QCT (AIMD) | QCTEF (AIMDEF) | QCT (AIMD) | QCTEF (AIMDEF) | ||
| a Direct Eley–Rideal mechanism. b Hot-atom mechanism. c Secondary hot-atom recombination between pre-adsorbed atoms. | |||||
| Scattering | 0.003 ± 0.000 (0.00) | 0.001 ± 0.000 (0.00) | 0.001 ± 0.000 (0.00) | 0.000 (0.00) | 0.02–0.10 |
| HD (ER)a | 0.103 ± 0.001 (0.11 ± 0.02) | 0.105 ± 0.001 (0.11 ± 0.02) | 0.141 ± 0.002 (0.13 ± 0.02) | 0.148 ± 0.002 (0.15 ± 0.02) | 0.47 ± 0.12 |
| HD (HA)b | 0.481 ± 0.002 (0.54 ± 0.03) | 0.353 ± 0.002 (0.33 ± 0.03) | 0.413 ± 0.002 (0.49 ± 0.03) | 0.313 ± 0.002 (0.29 ± 0.03) | |
| H2/D2c | 0.031 ± 0.001 (0.04 ± 0.01) | 0.009 ± 0.000 (0.01 ± 0.01) | 0.068 ± 0.001 (0.08 ± 0.02) | 0.025 ± 0.001 (0.01 ± 0.01) | |
| Sticking | 0.382 ± 0.002 (0.32 ± 0.03) | 0.532 ± 0.002 (0.55 ± 0.03) | 0.377 ± 0.002 (0.30 ± 0.03) | 0.514 ± 0.002 (0.55 ± 0.03) | |
| Abstraction reaction cross section (Å2) | |||||
| HD (ER + HA) | 6.683 ± 0.026 (7.43 ± 0.32) | 5.241 ± 0.026 (5.05 ± 0.33) | 6.346 ± 0.026 (7.12 ± 0.31) | 5.275 ± 0.026 (5.01 ± 0.33) | 5.2 ± 1.3 |
![]() | ||
| Fig. 4 Comparison of vibrational state (a and b) and overall rotational state (c and d) distributions for HD products in the H-on-D and D-on-H reactions (see text) from QCT(EF) and AIMD(EF) calculations. The experimental data of vibrational state and rotational state are taken from ref. 13 at Ein = 0.07 eV and θin = 10°. | ||
Fig. 4c and d compare the overall rotational state distributions of HD corresponding to sums over all vibrational states. The overall shapes of the AIMD(EF)38 distributions are well reproduced by QCT(EF) results, but the latter are free of artificial oscillations owing to the negligible statistical errors. Moreover, QCT(EF) distributions show more clearly the peak positions and the subtle effect due to EHP excitations, which marginally shifts the distribution to the lower-J end. In the H-on-D case, in particular, this nonadiabatic effect results in better agreement with the experimental distribution. In general, QCT(EF) calculations confirm the experimental observation that the rotational state distribution of D-on-H is slightly colder than that of H-on-D.13 The calculated mean rotational energies for H-on-D and D-on-H by QCT(EF) are 0.45(0.37) and 0.34(0.30) eV, respectively, in good agreement with the experimental values of 0.37 ± 0.05 and 0.35 ± 0.05 eV (Table 3).13
In Fig. 5a and b, the translational energy distributions of HD in QCT(EF) and AIMD(EF)38 simulations are compared. Thanks to much smaller statistical errors, the QCT(EF) results eliminate these oscillating structures in the distributions and provide more convincing evidence for a broader translational energy distribution for D-on-H than for H-on-D, an isotopic effect mistily observed in previous AIMD(EF) results.38 The inclusion of electronic friction shifts the QCT distribution notably to the low energy end for H-on-D, while more weakly for D-on-H. It is likely that the more significant energy loss due to EHPs for the incident H atom than D atom plays a role, because the former has a higher speed at a given incidence energy and will feel stronger frictional force. This seems a possible origin of the isotopic effect here. The mean translational energies for H-on-D and D-on-H predicted by QCT(QCTEF) are 1.00(0.90) and 1.10(1.05) eV, respectively. They agree well with the experimental trend and values12 of 0.85 ± 0.20 and 1.10 ± 0.20 eV in the two cases, even though the latter were measured under a different initial condition with Ein = 0.33 eV and θin = 60°.12
![]() | ||
| Fig. 5 Comparison of translational energy (a and b) and scattering angle (c and d) distributions for HD products in H-on-D and D-on-H reactions from QCT(EF) and AIMD(EF) calculations. In each distribution, the maximum population is scaled to be one. The experimental translational energy distributions are taken from ref. 12 at Ein = 0.33 eV and θin = 60°. The experimental scattering angle distributions are taken from ref. 9 at Ein = 0.07 eV and θin = 70° and it was stated there that the angular distribution is relatively insensitive to the incidence energy and angle. | ||
Scattering angle distributions of HD products obtained from QCT(EF), AIMD(EF)38 are compared with the available experimental data shown in Fig. 5c and d.9 The QCT(EF) calculations well reproduce the slightly asymmetrical angular distributions and mistily predict that the distribution for D-on-H is ∼1.5 times broader than that for H-on-D, as observed in the experiment. QCT and QCTEF results are very close to each other in both cases, implying that EHP excitations have a minor effect on the angular distribution. Although AIMD and AIMDEF results also qualitatively agree with experiments, their discrepancy (especially in the D-on-H case) seems more apparent due to the poor statistics. The asymmetry in angular distributions is consistent with the fact that the ER or HA reaction occurs prior to the parallel momentum accommodation. As assumed by Kratzer and Brenig21 and confirmed in our previous work,38 the difference between H-on-D and D-on-H comes from the fact that the parallel momentum for D is
times as large as that for H, giving rise to a ∼1.5 times broader angular distribution for D-on-H.
The present QCT(EF) calculations allow us to analyze the rotational excitation of each individual vibrational state, which was difficult to extract from a limited number of AIMD trajectories. In Fig. 6a and b, the calculated and measured mean rotational energies of each vibrational state13 for H-on-D and D-on-H are compared. In general, it is clear from Fig. 6 that the degree of rotational excitation decreases with increasing vibrational energy, indicating an anti-correlation between vibrational and rotational excitation. Our calculations properly capture the different decreasing behaviors of the mean rotational energy with an increasing vibrational excitation in both H-on-D and D-on-H cases. Specifically, for H-on-D, the degree of rotational excitation decays almost linearly with increasing vibrational energy in the experiment,13 which is reproduced by our QCT(EF) results despite a smaller decreasing rate. For D-on-H, the QCT(EF) results qualitatively capture the level-off behavior of the mean rotational energy from v = 1 and v = 2, but significantly underestimate the decreasing slope for lower and higher v. In any cases, the energy loss to EHPs systematically reduces the mean rotational energies of all vibrational state, but barely alters the decreasing rate.
![]() | ||
| Fig. 6 Comparison of the mean rotational energy as a function of vibrational state for the H-on-D (a) and D-on-H (b) collisions obtained from QCT(EF) and experiments. The experimental data are taken from ref. 13 at Ein = 0.07 eV and θin = 10°. | ||
In addition, the calculated and experimental distributions of internal energy (vibrational energy plus rotational energy) of each vibrational state are compared in Fig. 7. Note that the population of each individual ro-vibrational state is rather small, especially for v > 1, so that the statistical error bars are no longer negligible. The overall agreement with experiments13 is reasonably good. Including the energy dissipation to EHPs described by the EF model generally lowers the rotational excitation and improves the agreement between the theory and experiment. Especially, in the H-on-D case, the QCTEF distribution shows a gradually higher peak position and narrower width, with the increasing vibrational energy, in general accord with the experiment. On the other hand, the D-on-H rotational distributions have more low-J populations for lower v and more high-J populations for higher v, compared with H-on-D. QCTEF results reasonably capture this general experimental trend, but somewhat underestimate the rotational excitation for v = 0, while these overestimate for v ≥ 2. This behavior may be related to the narrower angular distribution for H-on-D than that for D-on-H, implying that the collision geometry in the former case is probably more focused to the surface normal.81 It is interesting to remind that the overall rotational state distribution is slightly colder for D-on-H than for H-on-D, as shown in Fig. 4, which is actually dominated by the v = 0 and v = 1 components.
![]() | ||
| Fig. 7 Comparison of internal energy distributions of the HD products in different vibrational states of the H-on-D (a, c, e, g and i) and D-on-H (b, d, f, h and j) reactions obtained from QCT(EF) and experimental data. The experimental data are taken from ref. 13 at Ein = 0.07 eV and θin = 10°. In each distribution, the maximum population is scaled to be one. | ||
Footnote |
| † These authors contributed equally. |
| This journal is © the Owner Societies 2023 |