Issue 40, 2019

Colloidal plasmonic nanostar antennas with wide range resonance tunability

Abstract

Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags, phototherapeutic agents, and hot electron-based photocatalytic platforms. Despite having emerged as the cornerstone among plasmonic nanoparticles with respect to resonant strength and tunability, some well-known limitations have hampered their technological implementation. Herein we tackle these recognized intrinsic weaknesses, which stem from the complex, and thus computationally untreatable morphology and the limited sample monodispersity, by proposing a novel 6-spike nanostar, which we have computationally studied and synthetically realized, as the epitome of 3D plasmonic nanoantenna with wide range plasmonic tunability. Our concerted computational and experimental effort shows that these nanostars combine the unique advantages of nanostructures fabricated from the top-down and those synthesized from the bottom-up, showcasing a unique plasmonic response that remains largely unaltered on going from the single particle to the ensemble. Furthermore, they display multiple, well-separated, narrow resonances, the most intense of which extends in space much farther than that observed before for any plasmonic mode localized around a colloidal nanostructure. Importantly, the unique close correlation between morphology and plasmonic response leads the resonant modes of these particles to be tunable between 600 and 2000 nm, a unique feature that could find relevance in cutting edge technological applications.

Graphical abstract: Colloidal plasmonic nanostar antennas with wide range resonance tunability

Supplementary files

Article information

Article type
Paper
Submitted
30 7月 2019
Accepted
10 9月 2019
First published
11 9月 2019

Nanoscale, 2019,11, 18662-18671

Author version available

Colloidal plasmonic nanostar antennas with wide range resonance tunability

T. V. Tsoulos, S. Atta, M. J. Lagos, M. Beetz, P. E. Batson, G. Tsilomelekis and L. Fabris, Nanoscale, 2019, 11, 18662 DOI: 10.1039/C9NR06533D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements