Temporal drift in Raman signal intensity during SERS measurements performed on analytes in liquid solutions†
Abstract
In this communication, we report one factor that could limit the quantitative analysis by SERS, which has not yet been discussed in the literature. Our results show that SERS experiments performed with the substrate immersed in liquid solutions are subjected to a temporal drift in the Raman signal intensity. Measurements were performed using gold nanoparticle suspensions and gold-covered nanostructured ITO surfaces as SERS substrates, immersed in analyte solutions of crystal violet and 4-mercaptobenzoic acid. Depending on the substrate and the conditions used for measurements, the Raman signal can take between 30 min and several hours to stabilize. This effect, if not taken into account, could have a negative impact on the results of the quantitative chemical analysis by SERS performed in situ in liquid solutions.
- This article is part of the themed collection: Surface-enhanced Raman scattering