Tetracoordinate borates as catalysts for reductive formylation of amines with carbon dioxide†
Abstract
We report sodium trihydroxyaryl borates as the first robust tetracoordinate organoboron catalysts for reductive functionalization of CO2. These catalysts, easily synthesized from condensing boronic acids with metal hydroxides, activate main group element–hydrogen (E–H) bonds efficiently. In contrast to BX3 type boranes, boronic acids and metal-BAr4 salts, under transition metal-free conditions, sodium trihydroxyaryl borates exhibit high reactivity of reductive N-formylation toward a variety of amines (106 examples), including those with functional groups such as ester, olefin, hydroxyl, cyano, nitro, halogen, MeS–, ether groups, etc. The over-performance to catalyze formylation of challenging pyridyl amines affords a promising alternative method to the use of traditional formylation reagents. Mechanistic investigation supports electrostatic interactions as the key for Si/B–H activation, enabling alkali metal borates as versatile catalysts for hydroborylation, hydrosilylation, and reductive formylation/methylation of CO2.
- This article is part of the themed collection: CO2 Utilisation