A suitably fabricated ternary nanocomposite (Cu-CuO@rGO-SiO2) as a sustainable and common heterogeneous catalyst for C–S, C–O and C–N coupling reactions†
Abstract
A hybrid composite based on π-electron rich reduced graphene oxide (rGO) and mesoporous silica (SiO2) was prepared and decorated with copper species to afford a ternary nanocomposite material (Cu-CuO@rGO-SiO2). This copper-based nanocomposite was successfully used as a robust and multi-tasking heterogeneous catalyst for most common cross-coupling reactions (e.g. C–S, C–O and C–N coupling). A broad range of catalytic activities are believed to be originated from the synergism of different co-existing copper species (Cu(0) and CuO) and facile charge transfer from the metal ions towards rGO–SiO2 matrices, as established from XPS and other studies.
- This article is part of the themed collection: Nanocatalysis