Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In this study, two newly developed small molecules based on 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine moieties, namely TPA-2,7-FLTPA-TPA and TPA-3,6-FLTPA-TPA, are designed, synthesized and characterized. The electrochemical, optical and thermal properties of both materials are investigated using various techniques. Afterwards, these materials are employed as dopant-free hole transporting materials (HTMs) in planar inverted perovskite solar cell devices with the aim of determining the device performance and studying their stability in comparison with reference N4,N4,N4′′,N4′′-tetra([1,10-biphenyl]-4-yl)-[1,1′:4′,1′′-terphenyl]-4,4′′-diamine (TaTm)-based devices. Under 1 sun conditions, TPA-3,6-FLTPA-TPA-based devices achieve a power conversion efficiency (PCE) of 13.9% whereas TPA-2,7-FLTPA-TPA-based devices exhibit the highest PCE of 17.1% mainly due to an improvement in the fill factor (FF). Meanwhile, the devices prepared using TaTm as the reference HTM exhibit an overall efficiency of 15.9%. In addition to the higher efficiency, our newly developed HTM TPA-2,7-FLTPA-TPA-based devices demonstrate good stability which is comparable to those with TaTm under similar aging test conditions.

Graphical abstract: Boosting inverted perovskite solar cell performance by using 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine as a dopant-free hole transporting material

Page: ^ Top