G.
Matzeu
a,
C.
O'Quigley
a,
E.
McNamara
a,
C.
Zuliani‡
b,
C.
Fay
a,
T.
Glennon
a and
D.
Diamond
*a
aInsight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland. E-mail: dermot.diamond@dcu.ie
bNational Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
First published on 23rd October 2015
The ability to non-invasively monitor sodium levels in sweat is of significant importance. Sodium is one of the preferred markers to diagnose and track the progression of cystic fibrosis, and knowledge of sodium levels could potentially enable personalised hydration strategies to be implemented for athletes or people working under severe environmental conditions. Herein we present a novel approach for the realisation of disposable potentiometric strips that allow for real-time monitoring of sodium in sweat. Our platform consists of a Solid-Contact Ion-Selective Electrode (SC-ISE) for Na+ detection and of a liquid-junction-free Reference Electrode (RE), combined together on a dual screen-printed substrate. Different poly-3,4-ethylenedioxythiophene (PEDOT) based films were tested as solid-contact, showing a significant impact on sensor characteristics such as sensitivity (i.e. differing from sub-Nernstian to Nernstian), dynamic range (i.e. 10−5 to 10−2.5 or 10−5 to 10−1aNa+), and especially within-batch reproducibility. The SC-ISE/RE combination was integrated into a microfluidic chip that was tested and optimised via on-bench trials. The Potentiometric Microfluidic Chip (PotMicroChip) was then connected to a wireless electronic platform to realise a wearable device whose performance was assessed during real-time stationary cycling sessions.
If optimisation studies are of fundamental importance when realising working electrodes, reliable solid-contact miniaturised reference electrodes are the other component of the galvanic cell that needs to be optimised (e.g. when aiming at the implementation of wearable applications). An amperometric biosensor based on screen-printed electrodes was recently developed to monitor uric acid levels in the exudate of chronic wounds via a wearable, wireless device.22 There have also been some reports on the combination of SC-ISEs with solid-contact reference electrodes to realise low-cost potentiometric combination sensor ‘strips’ for monitoring K+ in saliva13,23 and pH levels in saliva24 and chronic wounds exudate.25 The implementation of screen-printed potentiometric sensors to monitor Cl−,26 the fabrication of sensorised fabrics (e.g. to estimate pH, K+, and NH4+)27 or sensorised tattoo sensor structures transferred on skin (e.g. to detect ammonium, pH, lactate, etc.)28 represent important achievements in the integration of chemical sensors into wearable designs (e.g. allowing for non-invasive monitoring). The only example devoted to detect Na+ variations in real-time was based on a tattoo potentiometric configuration connected to a wireless electronic device.29 The well known coated-wire configuration used to produce solid-state ion-selective electrodes unfortunately suffers from significant drift in the potential signal. Consequently, the approach here presented for real-time detection of Na+ in sweat is different. For the first time, optimisation studies on solid-contact materials for Na+ ISEs showed that conducting polymers based on PEDOT affect the response characteristics, i.e., sensitivity, dynamic range, and within-batch reproducibility of sensors. PEDOT grown in 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)imide [emim][NTf2] seemed to offer the best compromise and was employed while realising batches of solid-contact screen-printed sodium ISEs. All plastic potentiometric strips were then made with a dual electrode configuration based on solid-contact working and reference electrodes. Furthermore, they were integrated into a microfluidic chip, able to drive the fluid and allow the interaction between the sample and the sensitive area, thanks to a special configuration that behaves as a passive pump. After on bench trials, this Potentiometric Microfluidic Chip (PotMicroChip) was connected to a Macroduct® (slightly modified to fulfil the constraints of the platform here presented) which is a commercial product used to harvest sweat samples. The connection to the wireless electronic platform (Mote) finally enabled the implementation of a novel wearable device able to monitor in real-time sodium variations of volunteers undergoing stationary cycling sessions.
The 7th layer was characterised by 2 holes through which a cotton thread was inserted (after being washed and dried like the highly absorbent material) to assist fluid movement into the microfluidic chip. The hole located in correspondence of the working electrode was the inlet of the system, connected to the Macroduct® (see Fig. 1(c)). The other was the outlet, and was covered by a punched poly-foam strip that worked as a reservoir filled with highly absorbent material (cotton bud, see Fig. 1(c)). This section was the ending part of the passive pump, which soaked up the sample delivered by the microfluidic chip. After removal, it can be employed to quantify and compare the Na+ levels obtained via standard analytical techniques with the ones measured using PotMicroChips.
![]() | ||
| Fig. 2 PotMicroChip connected to the Mote and positioned on the upper arm via Velcro® straps and enlargement of the sensing microfluidic area as worn during stationary cycling sessions. See also Fig. SID2† for more images of the system as worn, during trials. | ||
aNa+ and 474.8 mV (n = 3), respectively. The standard deviations of slope and offset extrapolated from the averaged calibration curve were quite large, i.e., 4.9 mV/log
aNa+ and 23.1 mV, respectively.
| Solid contact | Dynamic range (M) | Slope (mV/log aNa+) |
Offset (mV) |
|---|---|---|---|
| PEDOT(KCl) (n = 3) | 10−5 to 10−1 | 55.5 ± 4.9 | 474.8 ± 23.1 |
| PEDOT(PB) (n = 4) | 10−5 to 10−1 | 53.4 ± 3.0 | 524.1 ± 14.4 |
| PEDOT[emim][FAP] (n = 3) | 10−5 to 10−2.5 | 40.6 ± 2.4 | 235.2 ± 12.4 |
| PEDOT[emim][NTf2] (n = 4) | 10−5 to 10−1 | 53.1 ± 0.8 | 525.5 ± 3.6 |
Improving the within-batch reproducibility of the Na+ SC-ISE is a key step to obtain large batches of sensors that can be employed without individual calibration. For instance, highly reproducible sensors would be ideal for use in the field of sport sciences (e.g. for body fluid analysis) because of the limited time available to screen exercising athletes, and the ease of use of calibration free devices. It seems, therefore, that PEDOT electrodeposited from KCl aqueous solutions (see Table 1) was not suitable to prepare sensors with these ideal characteristics.
PEDOT/PB23 is an organic/inorganic composite material with potentially superior performance due to the well-defined potential of the PB redox couple. Sensors provided with the PEDOT/PB film as SC-layer showed good linear calibration (R2 > 0.98) within the 10−5 to 10−1 Na+ activity range. By averaging the calibration curves, the slope and offset values were found to be equal to 53.4 ± 3.0 mV/log
aNa+ and 524.1 ± 14.4 mV (n = 4), respectively (see Table 1). Although the standard deviations were smaller than the ones obtained with a PEDOT SC-layer grown from aqueous KCl, they were yet too large to be considered for use in a calibration free mode. These differences dictate the requirement for at least one point calibration before use and the need for further screening of other types of materials to be used to produce solid-contacts with better reproducibility.
ILs employed as media for the SC-layer electropolymerisation might provide new means to tailor the physico-chemical properties of this layer.20 For instance, ILs have a low-water content and therefore provide a water-free environment during the CP electrodeposition. In addition, since water can percolate through the membrane during the sensor operation time, the incorporation of the IL within the SC-layer may hinder the formation of a water-layer at the SC/membrane interface in relation to the IL hydrophobicity. By electrodepositing PEDOT from ILs, we speculated that the water uptake within the sensors would be reduced and that perhaps this factor may help improving the sensor batch reproducibility. [emim][FAP] and [emim][NTf2] were selected for this purpose since these ILs have very different physico-chemical properties (e.g. viscosity and conductivity). PEDOT films electrodeposited using these two ILs showed very different morphologies (as previously discussed by Zuliani et al.19).
Na+ SC-ISEs prepared with a PEDOT SC-layer potentiodynamically deposited from [emim][FAP] were characterised by a markedly sub-Nernstian average calibration slope (40.6 ± 2.4 mV/log
aNa+, n = 3) and a linear dynamic range between 10−5 and 10−2.5. Moreover, Fig. 3 presents the calibration curve obtained with sensors having a PEDOT SC-layer potentiostatically electrodeposited from [emim][NTf2]. In this case, the trends were linear (R2 > 0.99) within the Na+ activity range 10−5 to 10−1 and the average values of the slope and offset are 53.1 ± 0.8 mV/log
aNa+ and 525.5 ± 3.6 mV, respectively (n = 4) (see Table 1).
Furthermore, a significant decrease in the standard deviation values of the slope and offset was recorded. The improved batch reproducibility likely arose from the type of solid-contact layer employed since the Na+ ion-selective membrane was the same in all cases. Additionally, the ISEs exhibited a low drift of −0.04 ± 0.01 mV min−1, measured over 4 hours. Thus, [emim][NTf2] seemed to confer better properties to the solid-contact when compared to KCl or potassium ferricyanide (used for the PEDOT/PB composite preparation). Most likely, this result was achieved not only by avoiding the presence of water during the CP polymerisation process, but also, perhaps, by hampering or slowing down the CP de-doping process. Furthermore, the insertion/expulsion of ions during the redox changes of the CP depends on the bulkiness and physico-chemical nature of these ions.20,32 It is noteworthy that Bobacka et al.33 observed that anions entrapped in the PEDOT backbone affected the drift of the potential in K+ SC-ISEs. In addition, Michalska et al.34,35 reported that spontaneous charging/discharging may occur at the CP layer underlying that a PVC based ion-selective membrane in turn affects the response pattern of the sensor. Na+ ISEs characterised by a solid-contact layer made of PEDOT grown in [emim][NTf2] were also tested at different concentrations of NaCl in solutions mimicking sweat composition (5 mM CaCl2, 3 mM KCl, 14 mM lactic acid). Small variations in sensitivity were observed, with an average decrease of −4.1 ± 2.8 mV/log
aNa+ (n = 7). The optimised Na+ ISEs were then combined with a Solid-Contact Ionogel Reference Electrode (SCI-RE) to realise a disposable potentiometric strip. In this strip, the SC layers were deposited at once on both electrodes and the SC-ISE and SCI-RE differed only in the capping membrane.
aNa+) but suitable for real-time monitoring. However, after the device was connected to the modified Macroduct® via the sampling nozzle and positioned on the upper arm of a volunteer (see Fig. SI2(a), ESI†), we observed that sweat was not able to enter the microfluidic chip. The system was not able to sample the sweat, and this failure was likely due to the high surface tension generated at the interface between the Macroduct® tubing and the nozzle, and the smaller driving force of the sweat flow compared to the pump. The recorded signal showed a characteristic flat line with spikes arising from noise artefacts (see Fig. SI2(b), ESI†). These trials underlined the need for a system endowed with a more effective passive pumping mode of operation, which would be better able to overcome the surface tension barriers to sample movement at the various fluidic interfaces. We thus adopted a strategy where a highly absorbent material was put in contact with the electrodes within the channel. Additionally, a cotton thread going from the inlet to the outlet, as already implemented in previous studies,36,37 was used to assist fluid movement through the system due to enhanced capillary forces and enhanced hydrophilicity (see Fig. 4(a)).
A reservoir was finally positioned on top of the outlet, containing a hydrophilic cotton bud, which was the final element of the whole passive pump. The cotton bud provides a high capability for continuous transfer of water through the system, which in turn allows continuous real-time monitoring during cycling sessions. Furthermore, the harvested sweat in the adsorbant material is available for subsequent validation measurements via standard analytical techniques to verify the Na+ levels measured by the potentiometric platform (i.e. the adsorbant material can be removed and the amount of sweat and concentration of sodium measured using reference analytical techniques to give an overall picture of the sweat sodium level).
This configuration was first examined on the bench (see Fig. 4(a)), to assess its efficacy. It was then tested during real-time sessions using exercise bicycles that proved the feasibility of the microfluidic passive pump approach (see Fig. 4(b)), as shown by the blue colour characterising the cotton thread and the cotton bud positioned at the outlet. Fig. 4(b) shows that the fluid is able to travel along the system, from the inlet to the outlet.
It was then possible to test the performance of the fully integrated PotMicroChips platforms (i.e. potentiometric sensor, microfluidics and wireless electronics). The electrodes were conditioned in 10−2 M NaCl and then the microfluidic unit was mounted on top, and the system closed with the last PMMA layer. PotMicroChips were first tested on the bench using a 3 point calibration (Fig. SID1(b) and (c)†) in a concentration range consistent with real sweat samples (i.e. 10–60 mM and 65–90 mM for normal subjects and patients affected by cystic fibrosis, respectively). Fig. 5 shows the average calibration of the PotMicroChips (n = 3), characterised by a slight sub-Nernstian behaviour (50.23 ± 7.7 mV/log
aNa+) in the range 10−3 to 10−1 M.
![]() | ||
| Fig. 5 Example of the average of an on-bench calibration of 3 PotMicroChips. The error bars represent the standard deviation. | ||
Before being used to monitor sweat samples, the chips were flushed with deionised water to remove any ionic background. A PotMicroChip was then connected to the modified Macroduct®. The length of the tubing was shortened of 22.7 mm to allow for the connection with the top PMMA layer of the microfluidics and minimise the dead volume of the platform (i.e. decreased from 110.8 μL to 4.6 μL). The wearable device was finally positioned on the upper arm of volunteers. Fig. 6(a) shows real-time potential variations of PotMicroChips during cycling sessions and Fig. 6(b) the corresponding sodium levels (i.e. computed from calibration). The potential variations in Fig. 6(a) were characterised by a baseline value that described the environment in contact with the electrodes before the collected sample entered the μ-channel (as indicated by the arrows). Both potentials then featured a rapid increase that occurred at different times, i.e., after nearly 20 minutes (see Fig. 6(a), left) and 8 minutes (see Fig. 6(a), right), indicating that perspiration started at different stages in the two subjects (as suggested by previous studies29). The signal then reached a steady state within about 2 minutes (see Fig. 6(a), left) and 5 minutes (see Fig. 6(a), right), which more or less endured until the end of the trial.
![]() | ||
| Fig. 6 Example of signal recorded in real-time during a stationary cycling session with the wearable device used to monitor Na+ levels of two different volunteers. (a) shows real-time variations of potential vs. time (e.g. the arrows indicate when sweat enters the PotMicroChip). (b) shows real-time changes of Na+ concentrations vs. time. The device was positioned as shown in Fig. 2. | ||
Fig. 6(b) shows real-time variations of Na+ concentrations during exercise sessions. When sweat started to be harvested by the PotMicroChips, Na+ levels increased for 2 minutes (see Fig. 6(b), left) and 5 minutes (Fig. 6(b), right). Thanks to previous work done by Buono et al.,38 we can speculate that enhancements in Na+ levels might be related to contemporary augmented sweat rates, until a steady state was attained by both parameters.
Na+ levels then levelled off and reached average values of 10.3 ± 0.2 mM (see Fig. 6(b), left) and 24.2 ± 2.7 mM (see Fig. 6(b), right) (both of them within the normal physiologic range). Despite similarities on the overall trends, some differences can be noticed, e.g. in terms of duration and of Na+ concentrations observed (see Fig. 6). One of the trials (see Fig. 6(a) left) was characterised by potential readings (and consequently decreased Na+ concentrations) that decreased over time. This might be due to variations in sweat production rates, an observation that will be better clarified in future studies when the whole device will be endowed with an additional system able to simultaneously track this parameter.39
This was expected because diverse athletes (e.g. featured by different genetics, hydration, diet, heat acclimation, etc.) will produce personalised sweat profiles. Additionally, different workloads were chosen during the trials, according to the fitness level of the volunteer involved.
Signals were however characterised by some spikes that represent noise artefacts, most likely due due to sudden movements of the wearer. However, the Mote was endowed with a 3D printed casing able to keep its position reasonably stable and fixed on the body, and minimising movement of the internal circuitry, and during some of the cycling sessions, we performed body movement tests and they did not appear to unduly affect the sensor stability.
From these trials, the average interpolated sodium concentration at the end of cycling sessions was found to be 18.2 ± 8.9 mM, (n = 4) and it was possible to capture unique “over time sodium profiles” for each athlete, as it was possible to track changes in Na+ levels from the initial point of sweat contact with the sensor, through to the completion of the trial.
Due to the short duration of these studies, issues related to biofouling are minimal. The variations in sweat volume production from person to person, and the selection sampling location on the body, are more important and need to be investigated in more detail. On-body continuous evaluation of sodium in sweat has potential applications in the field of sport sciences2 or in clinical practice to diagnose and treat cystic fibrosis (CF) patients40,41 or during acclimation studies.38
In the near future, PotMicroChips will be validated through larger scale trials. The detected Na+ levels will be compared with measurements obtained via standard analytical techniques (e.g. atomic absorption spectroscopy or ion chromatography), or commercial sodium meters (e.g. AquaTwin®)42 to bypass tedious sampling and post-treatment protocols.
Footnotes |
| † Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ay02254a |
| ‡ The current affiliation of C. Zuliani is Department of Electric and Electronic Engineering, Imperial College London, London SW7 2AZ, UK. |
| This journal is © The Royal Society of Chemistry 2016 |