Issue 47, 2018

A polymer-free, biomimicry drug self-delivery system fabricated via a synergistic combination of bottom-up and top-down approaches

Abstract

Compared to conventional carrier-assistant drug delivery systems (DDSs), drug self-delivery systems (DSDSs) have advantages of unprecedented drug loading capacity, minimized carrier-related toxicity and ease of preparation. However, the colloidal stability and blood circulation time of DSDSs still need to be improved. Here we report on the development of a novel biomimicry drug self-delivery system by the integration of a top-down cell membrane complexing technique into our self-delivery multifunctional nano-platform made from the bottom-up approach that contains 100% active pharmaceutical ingredients (API) pheophorbide A and irinotecan conjugates (named PI). Compared to conventional cell membrane-coated nanoparticles with a polymer framework as the core and a relatively low drug loading capacity, this system consisting of red blood cell membrane vesicle complexed PI (RBC-PI) is polymer-free with up to 50% API loading. RBC-PI exhibited 10 times higher area under curve in a pharmacokinetic study and a much lower macrophage uptake compared with the parent PI nanoparticles. RBC-PI retained the excellent chemophototherapeutic effects of the PI nanoparticles, but possessed superior anti-cancer efficacy with prolonged blood circulation, improved tumor delivery, and enhanced photothermal effects in animal models. This system represents a novel example of using a cell membrane complexing technique for the effective surface modification of DSDSs. This is also an innovative study to form a polymer-free cell membrane nanoparticle complexing with positive surface-charged materials. This biomimicry DSDS takes advantage of the best features from both systems to make up for each other's shortcomings and provides all the critical features for an ideal drug delivery system.

Graphical abstract: A polymer-free, biomimicry drug self-delivery system fabricated via a synergistic combination of bottom-up and top-down approaches

Supplementary files

Article information

Article type
Paper
Submitted
04 июн 2018
Accepted
15 окт 2018
First published
12 ноя 2018

J. Mater. Chem. B, 2018,6, 7842-7853

A polymer-free, biomimicry drug self-delivery system fabricated via a synergistic combination of bottom-up and top-down approaches

X. Xu, G. Yang, X. Xue, H. Lu, H. Wu, Y. Huang, D. Jing, W. Xiao, J. Tian, W. Yao, C. Pan, T. Lin and Y. Li, J. Mater. Chem. B, 2018, 6, 7842 DOI: 10.1039/C8TB01464G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements