We report here a new strategy to graft both redox and DNA probes on carbon nanotubes to make a label-free DNA sensor. Oxidized single-walled carbon nanotubes are first immobilized on a self-assembled monolayer of cysteamine; then the redox probe, a quinone derivative 3-[(2-aminoethyl)sulfanyl-5-hydroxy-1,4-naphthoquinone], is grafted on the free carboxylic groups of the nanotubes. After that, for DNA probe grafting, new carboxylic sites are generated via an aryl diazonium route. After hybridization with a complementary sequence, the conformational changes of DNA could influence the redox kinetics of quinone, leading to a current increase of the redox signal, detected by square wave voltammetry. The system is selective, as it can discriminate a single mismatched sequence from the complementary one.
    
         
            
                     
                    
                        
                            
                                You have access to this article
                            
                            
                                
                                    
                                        
                                             Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?
                                            Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?