Issue 25, 2023

Multiresonant TADF materials: triggering the reverse intersystem crossing to alleviate the efficiency roll-off in OLEDs

Abstract

The hunt for narrow-band emissive pure organic molecules capable of harvesting both singlet and triplet excitons for light emission has garnered enormous attention to promote the advancement of organic light-emitting diodes (OLEDs). Over the past decade, organic thermally activated delayed fluorescence (TADF) materials based on donor (D)/acceptor (A) combinations have been researched for OLEDs in wide color gamut (RGB) regions. However, due to the strong intramolecular charge-transfer (CT) state, they exhibit broad emission with full-width-at-half maximum (FWHM) > 70 nm, which deviates from being detrimental to achieving high color purity for future high-end display electronics such as high-definition TVs and ultra-high-definition TVs (UHDTVs). Recently, the new development in the sub-class of TADF emitters called multi-resonant TADF (MR-TADF) emitters based on boron/nitrogen atoms has attracted much interest in ultra-high definition OLEDs. Consequently, MR-TADF emitters are appeal to their potentiality as promising candidates in fabricating the high-efficient OLEDs due to their numerous advantages such as high photoluminescence quantum yield (PLQY), unprecedented color purity, and narrow bandwidth (FWHM ≤ 40 nm). Until now many MR-TADF materials have been developed for ultra-gamut regions with different design concepts. However, most MR-TADF-OLEDs showed ruthless external quantum efficiency (EQE) roll-off characteristics at high brightness. Such EQE roll-off characteristics were derived mainly from the low reverse intersystem crossing (kRISC) rate values. This feature article primarily focuses on the design strategies to improve kRISC for MR-TADF materials with some supportive strategies including extending charge delocalization, heavy atom introduction, multi-donor/acceptor utilization, and a hyperfluorescence system approach. Furthermore, the outlook and prospects for future developments in MR-TADF skeletons are described.

Graphical abstract: Multiresonant TADF materials: triggering the reverse intersystem crossing to alleviate the efficiency roll-off in OLEDs

Article information

Article type
Feature Article
Submitted
20 gruod. 2022
Accepted
07 vas. 2023
First published
08 vas. 2023

Chem. Commun., 2023,59, 3685-3702

Multiresonant TADF materials: triggering the reverse intersystem crossing to alleviate the efficiency roll-off in OLEDs

K. R. Naveen, P. Palanisamy, M. Y. Chae and J. H. Kwon, Chem. Commun., 2023, 59, 3685 DOI: 10.1039/D2CC06802H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements