Polymeric biomaterials for periodontal tissue engineering and periodontitis

Abstract

The periodontium is one of the most complex tissues in the body because its structure is formed by a hierarchical combination of soft and hard tissues. Due to its complex architecture, the treatment and regeneration of damaged periodontal tissue caused by diseases is still a challenge in biomedicine. The most common disease of the periodontium is periodontitis, which occurs when the periodontium becomes infected and inflamed as a bacterial biofilm forms in the mouth. Recently, various biocompatible biomaterials made of natural and synthetic polymers have been developed for periodontal tissue regeneration or treatment due to their superior properties such as controlled drug and bioactive molecule delivery, mimicking the 3D network of tissue, biocompatibility, antibacterial and mechanical properties. In particular, biomaterials designed for drug delivery, such as hydrogels, scaffolds, films, membranes, micro/nanoparticles and fibers, and additively manufactured biomaterials have undergone in vitro and in vivo testing to confirm their potential clinical utility in periodontal regeneration and periodontitis treatment. This review explores recent advances in the use of biomaterials for the prevention and/or treatment of periodontal regeneration and periodontitis. Specifically, it emphasizes advancements in drug/biomolecule delivery and the use of additively manufactured biomaterials for addressing periodontal issues.

Graphical abstract: Polymeric biomaterials for periodontal tissue engineering and periodontitis

Article information

Article type
Review Article
Submitted
02 Jan 2024
Accepted
16 Apr 2024
First published
17 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Appl. Polym., 2024, Advance Article

Polymeric biomaterials for periodontal tissue engineering and periodontitis

G. Yürük, Y. D. Demir, Ş. Vural and N. S. Kehr, RSC Appl. Polym., 2024, Advance Article , DOI: 10.1039/D4LP00001C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements