Issue 16, 2018

Silicene, silicene derivatives, and their device applications

Abstract

Silicene, the ultimate scaling of a silicon atomic sheet in a buckled honeycomb lattice, represents a monoelemental class of two-dimensional (2D) materials similar to graphene but with unique potential for a host of exotic electronic properties. Nonetheless, there is a lack of experimental studies largely due to the interplay between material degradation and process portability issues. This review highlights the state-of-the-art experimental progress and future opportunities in the synthesis, characterization, stabilization, processing and experimental device examples of monolayer silicene and its derivatives. The electrostatic characteristics of the Ag-removal silicene field-effect transistor exhibit ambipolar charge transport, corroborating with theoretical predictions on Dirac fermions and Dirac cone in the band structure. The electronic structure of silicene is expected to be sensitive to substrate interaction, surface chemistry, and spin–orbit coupling, holding great promise for a variety of novel applications, such as topological bits, quantum sensing, and energy devices. Moreover, the unique allotropic affinity of silicene with single-crystalline bulk silicon suggests a more direct path for the integration with or revolution to ubiquitous semiconductor technology. Both the materials and process aspects of silicene research also provide transferable knowledge to other Xenes like stanene, germanene, phosphorene, and so forth.

Graphical abstract: Silicene, silicene derivatives, and their device applications

Article information

Article type
Review Article
Submitted
28 4 2018
First published
01 8 2018

Chem. Soc. Rev., 2018,47, 6370-6387

Author version available

Silicene, silicene derivatives, and their device applications

A. Molle, C. Grazianetti, L. Tao, D. Taneja, Md. H. Alam and D. Akinwande, Chem. Soc. Rev., 2018, 47, 6370 DOI: 10.1039/C8CS00338F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements