Carbon dots-functionalized extended gate organic field effect transistor-based biosensors for low abundance proteins†
Abstract
Organic field effect transistors have emerged as promising platforms for biosensing applications. However, the challenge lies in optimizing functionalization strategies for the sensing interface, enabling the simultaneous detection of low abundance proteins while maintaining device performance. Here, we designed a carbon dots-functionalized extended gate organic field effect transistor. Leveraging the advantages of facile synthesis, tunable modification, small particle size, and cost-effectiveness of carbon dots, we implemented their integration onto the electrode surface. Through harnessing the covalent interactions of functional groups on the surface of carbon dots, we achieved effective immobilization of low abundance proteins without compromising device performance. Consequently, this biosensor exhibits a remarkably low limit of detection of 2.7 pg mL−1 and demonstrates high selectivity for the carcinoembryonic antigen. These findings highlight the superior capabilities of carbon dots in enhancing biosensor performance and emphasize their potential for early cancer detection.
- This article is part of the themed collection: Nanoscale and Nanoscale Horizons: Carbon-based nanomaterials