Issue 40, 2023

Lattice distortion and re-distortion affecting irradiation tolerance in high entropy alloys

Abstract

High entropy alloys (HEAs) are promising nuclear structural materials due to their excellent irradiation resistance. However, the essential mechanisms of irradiation tolerance in HEAs remain largely inferential and imperfectly understood. This study investigates the evolution of irradiation-induced nano-scale microstructures in Ni, FeNiCr, FeNiCrCoCu and FeNiCrCuAl HEA models by molecular dynamics simulations to elucidate the conundrums. As fewer irradiation-induced Frenkel pair (FP) residuals were found in the FeNiCrCuAl HEA model in comparison with other models, a high resistance of the HEAs to the generation of permanent defects was indicated, while also the associated relatively long thermal spike and slow recrystallization stimulated a high efficiency for the recombination/annihilation of FPs to underscore a superior structural recovery of the HEAs. Under the influence of compositional increases of constituent elements, the effect of severe lattice distortion by energetics modifications was found to stimulate decreased atomic mobility accompanied by inhibited dislocation formation. The evolution of the models’ lattices in terms of their capacity to restrict interstitials and repair defects revealed that the self-healing/recovery mechanism that confirmed the highest initial lattice distortion value accompanied by the least lattice re-distortion value in the FeNiCrCuAl HEA model is key to the observed superior irradiation tolerance of the HEA models. Thus, by feasibly enhancing lattice distortion in crystalline materials, notably in HEAs, promising and potentially high irradiation-resistant structural materials can be developed.

Graphical abstract: Lattice distortion and re-distortion affecting irradiation tolerance in high entropy alloys

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2023
Accepted
18 Sep 2023
First published
18 Sep 2023

Nanoscale, 2023,15, 16447-16457

Lattice distortion and re-distortion affecting irradiation tolerance in high entropy alloys

P. Wang, M. Li, B. Malomo and L. Yang, Nanoscale, 2023, 15, 16447 DOI: 10.1039/D3NR03465H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements