DOI:
10.1039/C6RA02128J
(Communication)
RSC Adv., 2016,
6, 33606-33610
Aryne-induced dearomatized phosphonylation of electron-deficient azaarenes†
Received
24th January 2016
, Accepted 28th March 2016
First published on 30th March 2016
Abstract
An aryne-induced dearomatized phosphonylation reaction has been developed. Electron-deficient azaarenes such as quinolines, isoquinolines, phenanthroline and acridine undergo multicomponent reaction with arynes and dialkylphosphites to afford the corresponding dearomatized phosphonylated heterocycles in 50–90% yields.
Introduction
The quinoline and isoquinoline skeletons are found in a large number of biologically active natural products and pharmaceutically active compounds.1 Moreover, these nitrogen-containing heterocycles serve as versatile building blocks in organic synthesis. Therefore, considerable efforts have been exerted to develop new protocols for the synthesis and transformation of these ubiquitous structural motifs.2 On the other hand, α-aminophosphoric acids and their esters are important subunits found in many compounds possessing vital biological properties.3 We envisaged that nitrogen-containing heterocycles with a phosphonylated carbon centre will have interesting bioactivities, which prompted us to develop an efficient method to prepare these valuable compounds.
Recently, dearomatization reactions4 provide a powerful strategy for the construction and functionalization of aromatics. For electron-deficient azaarenes,5 N-acylations or N-alkylations are generally required in order to improve their electrophilicity. Arynes6 are highly active intermediates that can be readily attacked by various nucleophiles to generate zwitterionic species and initiate different reactions. In line with our continued interest of aryne chemistry,7 we hypothesized that electron-deficient nitrogen-containing azaarenes can undergo N-arylation with arynes to form zwitterionic species I,8 and after the following proton transfer and nucleophilic addition will furnish dearomatized phosphonylated nitrogen-containing heterocycles (Scheme 1).
 |
| Scheme 1 Aryne induced dearomatization of quinoline. | |
Results and discussion
With this idea in mind, we began our studies with the commercially available aryne precursor 1a,9 quinoline 2a and dimethyl phosphite 3a. With 2.0 equiv. CsF as fluoride source, this dearomatized phosphonylation reaction smoothly proceeded in THF at ambient temperature to produce phosphonylated dihydroquinoline 4a (ref. 10) in 44% yield (Table 1, entry 1). Encouraged by this result, other fluorides were subsequently tested for the reaction. TBAT can promote this three-component reaction in moderate yield, while KF, TBAF and TMAF are inefficient for the reaction (Table 1, entries 2–5). Fortunately, with 2.0 equiv. 18-crown-6 as coadditive, both KF and CsF can promote the dearomatization with dramatically increased efficiency, producing the desired product in high yield (Table 1, entries 6 and 7). A brief evaluation of the reaction media revealed that THF is the best choice in terms of the reaction yield (Table 1, entries 8–11). Reduction the additive loading to 1.0 equiv. resulted in decreased reaction yield (Table 1, entry 12).
Table 1 Evaluation of reaction conditionsa

|
Entry |
Additives |
Solvent |
Yieldb (%) |
Reaction conditions: 1a (1.5 equiv.), 2a (1.0 equiv.), 3a (1.5 equiv.), room temperature. Isolated yield. |
1 |
CsF (2 equiv.) |
THF |
44 |
2 |
TBAT (2 equiv.) |
THF |
52% |
3 |
KF (2 equiv.) |
THF |
12 |
4 |
TBAF (2 equiv.) |
THF |
<10 |
5 |
TMAF (2 equiv.) |
THF |
<10 |
6 |
KF (2 equiv.) 18-crow-6 (2 equiv.) |
THF |
89 |
7 |
CsF (2 equiv.) 18-crow-6 (2 equiv.) |
THF |
75 |
8 |
KF (2 equiv.) 18-crow-6 (2 equiv.) |
Toluene |
72 |
9 |
KF (2 equiv.) 18-crow-6 (2 equiv.) |
DMF |
<10 |
10 |
KF (2 equiv.) 18-crow-6 (2 equiv.) |
DCM |
38 |
11 |
KF (2 equiv.) 18-crow-6 (2 equiv.) |
CH3CN |
47 |
12 |
KF (1 equiv.) 18-crow-6 (1 equiv.) |
THF |
56 |
Under the optimal reaction conditions (Table 1, entry 6), we next examined the generality of these dearomatized phosphonylation reaction and the results are summarized in Table 2. Different dialkyl phosphites can trap the quinoline-aryne zwitterionic intermediate I, producing dearomatized products in good yields (Table 2, entries 1–4). However, owing to the relatively low nucleophilicity, diphenyl phosphite can not undergo the reaction (Table 2, entry 5). Both electron-donating and electron-withdrawing groups substituted quinolines efficiently underwent the multicomponent reaction to furnish the corresponding products in high yields (Table 2, entries 6–10). C-3 and C-4 substituted quinolines produced the phosphonylated dihydroquinolines in relatively low yields (Table 2, entries 11 and 12). Similar as quinolines, isoquinolines were proved to be good reactants for the reaction, affording 1-phosphite substituted 1,2-dihydro isoquinolines in moderate to high yields, with complete regioselectivities (Table 2, entries 13–15). Interestingly, 1,10-phenanthroline underwent the reaction, leading to monophosphonylated product in 70% yield, and no bisphosphonylated product was obtained (Table 2, entry 16). Notably, the symmetrical naphthalene performed very well, producing the corresponding dearomatized heterocycle in high yield (Table 2, entries 17 and 18). Intriguingly, when unsymmetrical 3-methoxyaryne was used for the reaction, the desired product can be formed in high yield with excellent regioselectivities (Table 2, entries 19 and 20).11 However, 6-methyl-2-trimethylsilylphenyl triflate provided two inseparable isomers in 50
:
50 ratios, albeit in high yield (Table 2, entry 21).
Table 2 Evaluation of substrates scopea
The present protocol can be further extended to acridine.12 Under the same reaction conditions, acridine underwent this dearomatized phosphonylation via 1,4-addition, producing 4v in 55% yield, and no 1,2-addition product was detected (Scheme 2).
 |
| Scheme 2 Aryne induced dearomatization of acridine. | |
Conclusions
In conclusion, we have demonstrated an efficient approach for the synthesis of phosphonylated nitrogen-containing heterocycles via an aryne-induced dearomatized phosphonylation of electron-deficient azaarenes. The simple procedure and mild conditions provide an interesting methodology for dearomatization of azaarenes. Further study of the substrate scope and the applications of this method are ongoing in our laboratory.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 21462034) and the Distinguished Young Scientist Program of Shihezi University (No. 2012ZRKXJQ06).
Notes and references
- For selected reviews see:
(a) K. W. Bentley, The Isoquinoline Alkaloids, Harwood Academic, Australia, 1998, vol. 1 Search PubMed;
(b) D. H. Barton, K. Nakanishi and O. Meth-Cohn, Comprehensive Natural Products Chemistry, Elsevier, Oxford, 1999, vol. 1–9 Search PubMed;
(c) J. D. Scott and R. M. Williams, Chem. Rev., 2002, 102, 1669 CrossRef CAS PubMed;
(d) J. P. Michael, Nat. Prod. Rep., 2002, 19, 742 RSC;
(e) K. W. Bentley, Nat. Prod. Rep., 2004, 21, 395 RSC;
(f) K. W. Bentley, Nat. Prod. Rep., 2006, 23, 444 RSC;
(g) J. P. Michael, Nat. Prod. Rep., 2008, 25, 166 RSC.
- For selected reviews see:
(a) M. Chrzanowska and M. D. Rozwadowska, Chem. Rev., 2004, 104, 3341 CrossRef CAS PubMed;
(b) J. Royer, M. Bonin and L. Micouin, Chem. Rev., 2004, 104, 2311 CrossRef CAS PubMed;
(c) Y. G. Zhou, Acc. Chem. Res., 2007, 40, 1357 CrossRef CAS PubMed;
(d) V. Sridharan, P. A. Suryavanshi and J. C. Menéndez, Chem. Rev., 2011, 111, 7157 CrossRef CAS PubMed; for selected examples, see:
(e) W. B. Wang, S. M. Lu, P. Y. Yang, X. W. Han and Y. G. Zhou, J. Am. Chem. Soc., 2003, 125, 10536 CrossRef CAS PubMed;
(f) M. Rueping, A. P. Antonchick and T. Theissmann, Angew. Chem., Int. Ed., 2006, 45, 3683 CrossRef CAS PubMed;
(g) Z. Sun, S. Yu, Z. Ding and D. Ma, J. Am. Chem. Soc., 2007, 129, 9300 CrossRef CAS PubMed;
(h) Z. Y. Han, H. Xiao, X. H. Chen and L. Z. Gong, J. Am. Chem. Soc., 2009, 131, 9182 CrossRef CAS PubMed;
(i) T. Wang, L. G. Zhuo, Z. Li, F. Chen, Z. Ding, Y. He, Q. H. Fan, J. Xiang, Z. X. Yu and A. S. C. Chan, J. Am. Chem. Soc., 2011, 133, 9878 CrossRef CAS PubMed;
(j) Q. A. Chen, K. Gao, Y. Duan, Z. S. Ye, L. Shi, Y. Yang and Y. G. Zhou, J. Am. Chem. Soc., 2012, 134, 2442 CrossRef CAS PubMed;
(k) H. Xu, S. J. Zuend, M. Woll, G. Y. Tao and E. N. Jacobsen, Science, 2010, 327, 986 CrossRef CAS PubMed;
(l) G. Dagousset, J. Zhu and G. Masson, J. Am. Chem. Soc., 2011, 133, 14804 CrossRef CAS PubMed;
(m) M. Q. Jia and S. L. You, ACS Catal., 2013, 3, 622 CrossRef CAS;
(n) J. H. Lin, G. Zong, R. B. Du, J. C. Xiao and S. Liu, Chem. Commun., 2012, 48, 7738 RSC;
(o) K. Mori, K. Ehara, K. Kurihara and T. Akiyama, J. Am. Chem. Soc., 2011, 133, 6166 CrossRef CAS PubMed;
(p) L. Ren, T. Lei, J. X. Ye and L. Z. Gong, Angew. Chem., Int. Ed., 2012, 51, 771 CrossRef CAS PubMed.
- For selected reviews see:
(a) P. Kafarski and B. Lejczak, Phosphorus, Sulfur Silicon Relat. Elem., 1991, 63, 193 CrossRef CAS;
(b) J. Hiratake and J. Oda, Biosci., Biotechnol., Biochem., 1997, 61, 211 CrossRef CAS;
(c) P. Kafarski and B. Lejczak, Curr. Med. Chem.: Anti-Cancer Agents, 2001, 1, 301 CrossRef CAS PubMed;
(d) J. Grembecka and P. Kafarski, Mini-Rev. Med. Chem., 2001, 1, 133 CrossRef CAS PubMed.
- For selected reviews see:
(a) C. X. Zhuo, C. Zheng and S. L. You, Acc. Chem. Res., 2014, 47, 2558 CrossRef CAS PubMed;
(b) A. R. Pape, K. P. Kaliappan and E. P. Kündig, Chem. Rev., 2000, 100, 2917 CrossRef CAS PubMed;
(c) A. R. Pape, K. P. Kaliappan and E. P. Kundig, Chem. Rev., 2000, 100, 2917 CrossRef CAS PubMed;
(d) D. Magdziak, S. J. Meek and T. R. R. Pettus, Chem. Rev., 2004, 104, 1383 CrossRef CAS PubMed;
(e) F. López Ortiz, M. J. Iglesias, I. Fernández, C. M. Andújar Sánchez and G. R. Gómez, Chem. Rev., 2007, 107, 1580 CrossRef PubMed;
(f) L. Pouységu, D. Deffieux and S. Quideau, Tetrahedron, 2010, 66, 2235 CrossRef;
(g) S. P. Roche and J. A. Porco Jr, Angew. Chem., Int. Ed., 2011, 50, 4068 CrossRef CAS PubMed;
(h) C. X. Zhuo, W. Zhang and S. L. You, Angew. Chem., Int. Ed., 2012, 51, 12662 CrossRef PubMed;
(i) Q. Ding, Y. Ye and R. Fan, Synthesis, 2013, 45, 1 CrossRef CAS. for selected examples, see:
(j) X. H. Zhao, X. H. Liu, H. J. Mei, J. Guo, L. Lin and X. M. Feng, Angew. Chem., Int. Ed., 2015, 54, 4032 CrossRef CAS PubMed;
(k) C. Shen, R. R. Liu, R. J. Fan, Y. L. Li, T. F. Xu, J. R. Gao and Y. X. Jia, J. Am. Chem. Soc., 2015, 137, 4936 CrossRef CAS PubMed;
(l) W. Shao, H. Li, C. Liu, C. J. Liu and S. L. You, Angew. Chem., Int. Ed., 2015, 54, 7684 CrossRef CAS PubMed;
(m) C. X. Zhuo, Q. Cheng, W. B. Liu, Q. Zhao and S. L. You, Angew. Chem., Int. Ed., 2015, 54, 8475 CrossRef CAS PubMed;
(n) K. Kubota, K. Hayama, H. Iwamoto and H. Ito, Angew. Chem., Int. Ed., 2015, 54, 8809 CrossRef CAS PubMed;
(o) C. X. Zhuo, Y. Zhou and S. L. You, J. Am. Chem. Soc., 2014, 136, 6590 CrossRef CAS PubMed;
(p) C. Zheng, C. X. Zhuo and S. L. You, J. Am. Chem. Soc., 2014, 136, 16251 CrossRef CAS PubMed;
(q) C. Romano, M. Q. Jia, M. Monari, E. Manoni and M. Bandini, Angew. Chem., Int. Ed., 2014, 53, 13854 CrossRef CAS PubMed.
- For selected reviews, see:
(a) Q. Ding, X. L. Zhou and R. Fan, Org. Biomol. Chem., 2014, 12, 4807 RSC;
(b) M. A. Bastrakov, A. M. Starosotnikov, V. V. Kachala, I. V. Fedyanin and S. A. Shevelev, Asian J. Org. Chem., 2015, 4, 146 CrossRef CAS; for selected examples, see:
(c) Q. S. Guo, D. M. Du and J. Xu, Angew. Chem., Int. Ed., 2008, 47, 759 CrossRef CAS PubMed;
(d) Y. Yamaoka, H. Miyabe and Y. Takemoto, J. Am. Chem. Soc., 2007, 129, 6686 CrossRef CAS PubMed;
(e) M. S. Taylor, N. Tokunaga and E. N. Jacobsen, Angew. Chem., Int. Ed., 2005, 44, 6700 CrossRef CAS PubMed;
(f) K. Frisch, A. Landa, S. Saaby and K. A. Jørgensen, Angew. Chem., Int. Ed., 2005, 44, 6058 CrossRef CAS PubMed;
(g) O. G. Mancheno, S. Asmus, M. Zurro and T. Fischer, Angew. Chem., Int. Ed., 2015, 54, 8823 CrossRef PubMed;
(h) Z. Sun, S. Yu, Z. Ding and D. Ma, J. Am. Chem. Soc., 2007, 129, 9300 CrossRef CAS PubMed;
(i) M. Á. Fernández-Ibánez, B. Maciá, M. G. Pizzuti, A. J. Minnaard and B. L. Feringa, Angew. Chem., Int. Ed., 2009, 48, 9339 CrossRef PubMed;
(j) C. Nadeau, S. Aly and K. Belyk, J. Am. Chem. Soc., 2011, 133, 2878 CrossRef PubMed;
(k) G. Arnott, H. Brice, J. Clayden and E. Blaney, Org. Lett., 2008, 10, 3089 CrossRef CAS PubMed;
(l) H. Brice, J. Clayden and S. D. Hamilton, Beilstein J. Org. Chem., 2010, 6, 22 Search PubMed;
(m) J. Senczyszyn, H. Brice and J. Clayden, Org. Lett., 2013, 15, 1922 CrossRef CAS PubMed;
(n) A. Wang, W. Zhang and S. You, Org. Lett., 2013, 15, 1488 CrossRef PubMed.
- For selected reviews, see:
(a) A. Bhunia, S. R. Yetra and A. T. Biju, Chem. Soc. Rev., 2012, 41, 3140 RSC;
(b) S. S. Bhojgude and A. T. Biju, Angew. Chem., Int. Ed., 2012, 51, 1520 CrossRef CAS PubMed;
(c) P. M. Tadross and B. M. Stoltz, Chem. Rev., 2012, 112, 3550 CrossRef CAS PubMed;
(d) A. V. Dubrovskiy, N. A. Markina and R. C. Larock, Org. Biomol. Chem., 2013, 11, 191 RSC;
(e) C. Wu and F. Shi, Asian J. Org. Chem., 2013, 2, 116 CrossRef CAS;
(f) D. Pérez, D. Peña and E. Guitián, Eur. J. Org. Chem., 2013, 27, 5981 CrossRef. For selected examples, see:
(g) A. Bunescu, C. Piemontesi, Q. Wang and J. Zhu, Chem. Commun., 2013, 49, 10284 RSC;
(h) S. E. Suh, A. A. Barrosa and D. M. Chenoweth, Chem. Sci., 2015, 6, 5128 RSC;
(i) T. Roy, S. S. Bhojgude, T. Kaicharla, M. Thangaraj, B. Garaib and A. T. Biju, Org. Chem. Front., 2016, 3, 71–76 RSC;
(j) S. P. Swain, Y. C. Shih, S. C. Tsay, J. Jacob, C. C. Lin, K. C. Hwang, J. C. Horng and J. R. Hwu, Angew. Chem., Int. Ed., 2015, 54, 9926 CrossRef CAS PubMed;
(k) M. Feng, B. Tang, N. Wang, H. Xu and X. Jiang, Angew. Chem., Int. Ed., 2015, 54, 14960–14964 CrossRef CAS PubMed;
(l) S. K. Aithagani, S. Dara, G. Munagala, H. Aruri, M. Yadav, S. Sharma, R. A. Vishwakarma and P. P. Singh, Org. Lett., 2015, 17, 5547 CrossRef CAS PubMed;
(m) J. Shi, D. Qiu, J. Wang, H. Xu and Y. Li, J. Am. Chem. Soc., 2015, 137, 5670 CrossRef CAS PubMed;
(n) Y. Chen and M. C. Willis, Org. Lett., 2015, 17, 4786 CrossRef CAS PubMed;
(o) J. C. Castillo, J. Quiroga, R. Abonia, J. Rodriguez and Y. Coquerel, Org. Lett., 2015, 17, 3374 CrossRef CAS PubMed;
(p) A. Bunescu, Q. Wang and J. P. Zhu, Org. Lett., 2015, 17, 1890 CrossRef CAS PubMed;
(q) Y. Fang, D. C. Rogness, R. C. Larock and F. Shi, J. Org. Chem., 2012, 77, 6262 CrossRef CAS PubMed;
(r) X. Huang and T. Zhang, J. Org. Chem., 2010, 75, 506 CrossRef CAS PubMed;
(s) D. C. Rogness and R. C. Larock, J. Org. Chem., 2011, 76, 4980 CrossRef CAS PubMed;
(t) C. D. Gilmore, K. M. Allan and B. M. Stoltz, J. Am. Chem. Soc., 2008, 130, 1558 CrossRef CAS PubMed;
(u) D. C. Rogness and R. C. Larock, J. Org. Chem., 2011, 76, 4980 CrossRef CAS PubMed;
(v) D. Hong, Z. Chen, X. Lin and Y. Wang, Org. Lett., 2010, 12, 4608 CrossRef CAS PubMed;
(w) D. McAusland, S. Seo, D. G. Pintori, J. Finlayson and M. F. Greaney, Org. Lett., 2011, 13, 3667 CrossRef CAS PubMed;
(x) S. D. Vaidya and N. P. Argade, Org. Lett., 2013, 15, 4006 CrossRef CAS PubMed.
-
(a) L. He, J. X. Pian, J. F. Shi, G. F. Du and B. Dai, Tetrahedron, 2014, 70, 2400 CrossRef CAS;
(b) J. X. Pian, L. He, G. F. Du, H. Guo and B. Dai, J. Org. Chem., 2014, 79, 5820 CrossRef CAS PubMed;
(c) L. He, J. X. Pian, J. Zhang and Y. Z. Li, Chin. Chem. Lett., 2012, 23, 1359 CrossRef CAS.
- For reactions of aryne-derived zwitterionic species I, see:
(a) D. C. Rogness, N. A. Markina, J. P. Waldo and R. C. Larock, J. Org. Chem., 2012, 77, 2743 CrossRef CAS PubMed;
(b) C. H. Cheng, Chem. Commun., 2006, 23, 2454 Search PubMed;
(c) C. H. Cheng, Chem.–Asian. J., 2010, 5, 153 CrossRef PubMed.
- Y. Himeshima, T. Sonoda and H. Kobayashi, Chem. Lett., 1983, 12, 1211–1214 CrossRef.
- The product can be kept in refrigerator for two weeks without obvious change.
- Larock reported similar regioselectivities of the reaction of unsymmetrical 3-methoxyaryne, see: Z. Liu and R. C. Larock, Org. Lett., 2003, 5, 4673 CrossRef CAS PubMed.
- For organocatalytic asymmetric dearomatization of acridine, see:
(a) T. Liang, J. Xiao, Z. Y. Xiong and X. W. Li, J. Org. Chem., 2012, 77, 3583 CrossRef CAS PubMed;
(b) F. Benfatti, E. Benedetto and P. G. Cozzi, Chem.–Asian. J., 2010, 5, 2047 CrossRef CAS PubMed.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra02128j |
|
This journal is © The Royal Society of Chemistry 2016 |
Click here to see how this site uses Cookies. View our privacy policy here.