Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy
Abstract
We report the low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals (BPLCs) comprising of a large dielectric anisotropy nematic host. Debye dielectric relaxation sets a practical limit even when the device operation temperature is still within the blue phase range. To explain these phenomena, we propose a model to describe the temperature and frequency dependent Kerr constant and obtain excellent agreement with experiment. Doping a diluter compound to the BPLC host helps to reduce viscosity, which in turn boosts the dielectric relaxation frequency and extends the low temperature operation range.