Issue 6, 2015

Selective and controllable purification of monomeric lignin model compounds via aqueous phase reforming

Abstract

Depolymerization of lignin into its monomeric constituents is a promising way to produce aromatic bulk chemicals from lignocellulosic biomass and lignin waste streams. In order to obtain an industrial product further downstream, processing of the monomeric mixture will be needed. Therefore, we selectively removed methoxy (MeO) and hydroxy (OH) groups from mixtures of monomeric lignin model compounds on a Pt-based catalyst in an aqueous environment and achieved a narrow range of products, which is controllable via limiting the hydrogen supply. This well-balanced supply of hydrogen is crucial to push the reaction towards phenol while simultaneously preventing ring hydration. We could show that at temperatures of approx. 250 °C with a Pt-based catalyst the MeO group was converted into an OH group while reacting with water to methanol (MeOH). This MeOH is then instantly reformed on the Pt catalyst to 3 H2 and CO2 providing an in situ supply of hydrogen directly at the active sites of the catalyst, which facilitates MeO and OH group removal. Therefore, the amount of MeO groups limits the supply of hydrogen. Ring hydration does not occur because the hydrogen is produced in situ and consumed immediately on the catalyst. Adding small amounts of MeOH in the beginning accelerates the reaction as expected; nevertheless the hydrogenation of phenol seems to be the slowest reaction in the reaction route, making it a promising product of the process. Pt catalysts with γ-Al2O3, ZrO2, TiO2, and activated carbon as a support were investigated, while a Ni/C catalyst was also tested as an alternative. Pt/ZrO2 showed the best results with regard to conversion, followed by Pt/C and Pt/γ-Al2O3. Pt/TiO2 and the Ni/C catalysts showed no significant conversion. The support comparison reactions were done for ten hours taking liquid samples every hour. A simple reaction network is proposed and reaction rates are estimated and then fitted onto measured data.

Graphical abstract: Selective and controllable purification of monomeric lignin model compounds via aqueous phase reforming

Supplementary files

Article information

Article type
Paper
Submitted
19 vlj 2015
Accepted
29 tra 2015
First published
01 svi 2015

Green Chem., 2015,17, 3621-3631

Selective and controllable purification of monomeric lignin model compounds via aqueous phase reforming

M. Otromke, L. Theiss, A. Wunsch, A. Susdorf and T. Aicher, Green Chem., 2015, 17, 3621 DOI: 10.1039/C5GC00410A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements