Yixuan
Wang‡
a,
Zhongyu
Zhang‡
b,
Guangxia
Wang
a,
Xinyi
Yang
*a,
Yongming
Sui
a,
Fei
Du
*b and
Bo
Zou
*a
aState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China. E-mail: yangxinyi@jlu.edu.cn; zoubo@jlu.edu.cn
bKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, People's Republic of China. E-mail: dufei@jlu.edu.cn
First published on 11th June 2019
Given their high theoretical capacities, metal phosphides are anticipated to be excellent charge-storage materials for high-efficiency potassium-ion batteries. However, one of the major problems is the shuttling of heavy and large K+ ions between electrodes, which triggers rapid capacity fading. Here, we demonstrate that sub-4 nm Co2P nanorods attached to reduced graphene oxide (Co2P@rGO) can operate at a lifespan exceeding thousands of cycles. By taking advantage of the high electronic conductivity and flexibility of reduced graphene oxide (rGO), the composite electrode delivers a high capacity (374 mA h g−1 at 20 mA g−1) and excellent C-rate capability (141 mA h g−1 at 2 A g−1), superior to its commercial counterpart. Impressively, the electrode maintains 54% of the capacity over 5000 cycles, and there is almost no capacity fading after the initial 200 cycles. In addition, a hybrid potassium-ion capacitor, assembled from a Co2P@rGO anode and activated carbon cathode, affords a high energy/power density (87 W h kg−1 and 4260 W kg−1) in a potential window of 1.0–4.0 V, as well as a long lifespan of over 1000 cycles. These extremes demonstrate the high-performance of the Co2P@rGO anode materials and an optimal synthesis strategy to boost K+ storage performance.
New conceptsPotassium-ion batteries (PIBs) are a promising alternative to lithium-ion batteries owing to the abundant natural resources of potassium. To date, the exploration of suitable materials for PIBs is in the early stages. Phosphide can deliver high reversible capacities but suffers from irreversible deterioration of its crystal structure resulting in unsatisfactory cycle stability. In this report, we synthesize sub-4 nm Co2P nanorods attached onto reduced graphene oxide using a colloidal mesostructural method. The ultrafine nanostructure not only effectively accommodates the strain to ensure the integrity of the electrode during cycling, but also reduces the solid-state diffusion length of potassium-ion and provides significantly more electrochemistry reaction sites. The flexible rGO can improve the electronic conductivity and provides a further buffering effect against volume changes during cycling, maintaining the integrity of the electrode. Benefiting from the design of the material, the electrode can deliver a high capacity and sustain a long lifespan of 5000 cycles. |
One promising class of anode materials for PIBs is phosphorus (P), which can provide a high reversible capacity27via an alloying–dealloying reaction,28–30 however, it still suffers from the irreversible deterioration of its crystal structure resulting in an unsatisfactory cycle stability and rate capability. To tackle this issue, one potential approach is hybridization of the carbonaceous materials with nanostructured active materials.31 The nanosized materials have large specific surface areas and a short ionic transfer pathway, facilitating fast ionic conductivity and kinetic properties. Moreover, the introduced carbonaceous materials are beneficial, improving the electronic conductivity and tolerance of the volume expansion during the reversible insertion and extraction of K+. So far, there have been few studies published which report the electrochemical properties of P-based anode materials for application in PIBs. Sultana et al. reported the K+ storage properties of hybrid black phosphorus/graphite, which delivered a high reversible capacity of almost 400 mA h g−1 at a current density of 25 mA g−1.32 Guo et al. prepared a binary compound, Sn4P3/C hybrid material, via a facile ball-milling method which had a stable capacity of ∼384 mA h g−1 at a current density of 50 mA g−1, which was superior to its unary compounds, Sn/C or P/C.27 Also, it was confirmed that both Sn and P alloy with the K+ ions to form K-Sn and K–P phases, with these phases acting as mutual buffers to alleviate the volume expansion. However, it is worth noting that, although the ball-milling method is convenient for achieving phosphorus/carbon composite materials, it is hard to control the particle sizes of P and the compositing manner between P and carbon. A serve agglomeration is usually found, preventing electrolyte infiltration and the transfer of K+ ions. In this respect, an optimal synthesis strategy to prepare the well-dispersed and homogeneously distributed P/carbonaceous nanocomposites is essential to achieving a long-term cycle stability, as well as the high-rate charge–discharge ability to satisfy the demands of large-scale energy storage.
Cobalt phosphides (e.g. Co2P) are described as being a promising anode material for rechargeable batteries because of their relatively low charge–discharge potential, metallic character and good thermal stability.33,34 Recent density functional theory calculations have suggested that Co2P with an orthorhombic phase better illustrates the electronic conductivity compared to other cobalt phosphides, which is helpful for the electron transportation and thus the improvement of alkali-metal storage properties.35 Here, we prepared a structure consisting of sub-4 nm diameter and ∼65 nm length ultrafine Co2P nanorods (NRs) attached onto reduced graphene oxide (abbreviated as U-Co2P@rGO-14) via a colloidal mesostructured method, and present the electrochemical properties as a viable anode material for PIBs. Benefiting from the large surface-to-volume ratio and ability to accommodate the strain of the as-prepared ultrafine NRs, the U-Co2P@rGO-14 hybrid electrode delivered a high reversible capacity of 374 mA h g−1 at a current density of 20 mA g−1, an excellent capacity retention of 54% after 5000 cycles, and a superior rate capability with a specific capacity of 141 mA h g−1 at 2 A g−1. Furthermore, an innovative hybrid potassium-ion capacitor (KIC) was constructed by coupling U-Co2P@rGO-14 and activated carbon (AC) as the anode and cathode, respectively, which could deliver a high energy density (maximum 87 W h kg−1), a high power density (maximum 4260 W kg−1), and a long lifespan (1000 cycles).
The angle dispersive synchrotron X-ray diffraction (ADXRD) patterns of the ultrafine Co2P NRs were performed at Shanghai Synchrotron Radiation Facility (SSRF) with an incident monochromatic wavelength of 0.6199 Å37 (Fig. 1b). Rietveld refinement confirmed the orthorhombic polymorph with a space group of Pnma (a = 5.646 Å, b = 6.609 Å, and c = 3.513 Å). The narrow (002) peak is attributed to the preferred orientation growth along the length direction, while the broad (121) peak is due to the very small size in the width direction. These unusual characteristics of the ADXRD pattern are consistent with the unique geometry of the ultrathin NRs, which is expected to exhibit an overlap of extremely broad and sharp features owing to the extreme difference in the coherence lengths along different crystallographic axes. As shown in the transmission electron microscopy (TEM) image (Fig. 1c, d and Fig. S1, ESI†), these Co2P NRs have a highly uniform ultrafine morphology with an average diameter of less than 4 nm. The high-resolution TEM (HRTEM) image taken of one Co2P nanorod reveals distinct lattice fringes with a spacing of about 0.17 nm corresponding to the (002) plane of Co2P (Fig. 1e), which is consistent with the corresponding fast Fourier transform (FFT) pattern obtained (as shown in the inset of Fig. 1e).
After introducing the rGO sheets, the ultrafine Co2P NRs were tightly attached and confined in the flexible rGO framework (Fig. 2a). Fig. 2b shows the in-plane alignment of the ultrafine NRs in a stand-alone unit without aggregation. This low tortuosity arrangement is highly recommended for kinetically accessible storage electrodes.4,13 It should be noted that the Co2P NRs retained the ultrathin nature with an orthorhombic structure, as shown in Fig. 2c and d. As evidenced by the corresponding EDS elemental mappings, the Co, P and C elements are uniformly distributed throughout the U-Co2P@rGO-14 nanocomposite (Fig. 2e). The rGO content for the U-Co2P@rGO-14 nanocomposite is quantitatively estimated to be 14 wt%, according to the carbon, hydrogen and nitrogen analyzer (CHN) measurements. The chemical states of Co and P for Co2P were further characterized using X-ray photoelectron spectroscopy (XPS). We have measured the XPS of the pure Co2P nanorods, as shown in Fig. S2 (ESI†), the peaks at 797.3 and 781.7 eV are assigned to the Co 2p1/2 and Co 2p3/2 of the oxidized Co2+ species respectively.38–40 As shown in Fig. 2f, we also measured the XPS of U-Co2P@rGO-14, and the corresponding peak positions of 781.6 and 797.3 eV did not move significantly. It can be proven that the Co in Co2P is not chemically bonded to the oxygen in rGO. Therefore we propose that it is physically attached. The two apparent satellite peaks at 803.2 and 785.7 eV, are ascribed to the shakeup excitation of the high-spin Co2+ ions. Furthermore, the peaks at 793.6 and 778.7 eV are assigned to the Co 2p1/2 and Co 2p3/2 of Co species in U-Co2P@rGO-14, which have a partial positive charge from the Co metal.38 The high-resolution C 1s XPS peak of U-Co2P@rGO-14 can be compartmentalized into two peaks located around 284.6 and 286 eV. The former peak is assigned to the C–C bonding in rGO, while the latter peak is indexed to the C–O bonding species. Generally speaking, rGO exhibits the same oxygen-containing functionalities, but their intensities are much smaller than GO. Fig. 2f shows a lower peak intensity for the C–O bonding compared to the C–C bonding, indicating the presence of rGO.41 In the close-up P 2p spectrum of U-Co2P@rGO-14, the peak at 129.9 eV is close to the binding energy of P 2p3/2 of the P in U-Co2P@rGO-14, which shows a negative shift from that of the elemental P. In addition, the broad peak at 133.3 eV is assigned to the oxidized phosphorus species, resulting from the inevitable surface oxidation of U-Co2P@rGO-14.
Therefore, we propose that the ultrafine Co2P NRs are nucleated in situ and deposited on the amorphous carbon matrix (Fig. 1a) during the phosphorization process. The robust interfacial connection guarantees the structural stability of the composite. The N2 adsorption–desorption isotherms of the U-Co2P@rGO-14 are shown in Fig. S3 (ESI†), possessing a surface area of 47.57 m2 g−1 according to the Brunauer–Emmett–Teller (BET) method.42 The isotherms are type II, implying that U-Co2P@rGO-14 is nonporous or microporous.
To understand the advantages of the ultrafine nanostructure on the potassium storage performance, the U-Co2P@rGO-14 nanocomposite was investigated as an anode material for PIBs in comparison with its commercial counterpart (marked as C-Co2P@rGO) (Fig. S4, ESI†). As shown in Fig. S5 (ESI†), C-Co2P@rGO exhibits a sphere-like shape with an average particle size of around 50 nm, much larger than that of U-Co2P@rGO-14. Furthermore, we found a serve agglomeration of lots of Co2P particles and obvious separation between the active materials and rGO (Fig. S6, ESI†), preventing electrolyte infiltration and electron/ion transfer during the electrochemical reaction. The cyclic voltammetry of U-Co2P@rGO-14 was recorded as being between 3.0 and 0.01 V, as shown in Fig. 3a. The initial cathodic scan shows a reduced peak at ≈0.62 V, which is absent in subsequent cycles. This phenomenon is common in the studies of LIBs and sodium ion batteries (SIBs), possibly related to the decomposition of the electrolyte and the formation of a solid–electrolyte interface (SEI) layer on the surface of the anode materials.43,44 During subsequent cycles, stabilized curves exhibited a pair of weak but discernible peaks centred at about 0.71 V and 0.58 V, which can be attributed to the conversion reaction between K–P and Co2P.45 The lowest voltage pair at 0.01/0.3 V corresponds to the insertion/extraction processes of K+ into the rGO, which was further confirmed using the cyclic voltammetry (CV) profiles of rGO (Fig. S7, ESI†).46 Galvanostatic charge–discharge profiles of U-Co2P@rGO-14 were recorded at 20 mA g−1 (Fig. 3b). The U-Co2P@rGO-14 nanocomposite delivers an initial discharge and charge capacities of 686 and 374 mA h g−1 at a current density of 20 mA g−1, respectively. The low coulombic efficiency (CE) of 54.5% was attributed to the decomposition of the electrolyte to form SEI films. Encouragingly, the CE increases as the electrochemical reaction proceeds and stabilizes at almost 95% after 30 cycles, as shown in Fig. 3c. Moreover, it is worth noting that there is no obvious working plateau in the charge–discharge profiles, usually found in the conversion- or alloying-type anode materials for LIBs and SIBs.34,45 The possible reasons lie in the amorphisation of the working electrode upon insertion of a large amount of ions. To further demonstrate the advantage of the ultrafine nano-architecture, the rate capability of both samples was evaluated as the current densities increased from 0.02 to 2 A g−1 (Fig. 3d). At a low current density of 20 mA g−1, the U-Co2P@rGO-14 nanocomposite delivers a reversible capacity of 374 mA h g−1, considerably higher than that of the C-Co2P@rGO materials (143 mA h g−1). It is worth noting that the manifest capacity is still lower than its theoretical one based on the conversion reactions of three electrons (540 mA h g−1). This phenomenon can be understood in terms of the sluggish kinetic property of KIBs, which results in the incomplete electrochemical reaction. When the high current density is increased to 2 A g−1, the ultrafine nanocomposite electrode delivers a high capacity of 141 mA h g−1, a capacity up to 2.43 times higher than that of the C-Co2P@rGO electrode (58 mA h g−1). The excellent rate performance of the U-Co2P@rGO-14 electrode is due to the unique ultrafine nanostructure, which can improve the kinetics by offering a shorter solid-state diffusion length and further electrochemistry reaction sites. To separate the capacity contribution from rGO, its rate capability at the same current densities was also evaluated and is displayed in Fig. S8 (ESI†). rGO could only contribute 39.9 mA h g−1 at a current density of 20 mA g−1 and 11.2 mA h g−1 at current density of 2 A g−1 to the total reversible capacity as it accounts for 14% by weight. Furthermore, as listed in Table S1 (ESI†), the U-Co2P@rGO-14 nanocomposite demonstrates the excellent rate performance in the state-of-the-art conversion- and alloying-type anode materials for PIBs, which can be understood in terms of the unique ultrafine nanostructure of Co2P, not only providing significantly more electrochemistry reaction sites, but also reducing the solid-state diffusion length.
As is well known, PIBs generally suffer from a problematic cycle life (typically not exceeding 1000 cycles) compared to their LIBs or SIBs counterparts, presumably owing to the larger size of the K+ ion.27,31,47,48 To assess the long-term response of the U-Co2P@rGO-14 electrode, the cycle performance was also evaluated at a current density of 200 mA g−1 (Fig. 4a). The electrode maintains 64.7% of its capacity during the first 200 cycles. This capacity degradation in the long-term cycle test at a high current density is usually found in studies of SIBs and PIBs,27,45 possibly related to the gradual decomposition of the electrolyte to form a stable SEI layer or activation of some cell components. Impressively, the electrode subsequently exhibits a high capacity retention rate of 83.6% from 200 to 5000 cycles, and there is no tendency of deterioration to date. As compared in Table S1 (ESI†), the U-Co2P@rGO-14 electrode demonstrated a remarkable cycle performance in terms of the high reversible capacity and the longest cycle life. Moreover, compared with U-Co2P@rGO-14 U-Co2P (Fig. S9, ESI†) delivers almost no capacity after 40 cycles, showing that the rGO provides a further buffering effect against volume changes during cycling, maintaining the integrity of the electrode. It also benefits from the moderate mass percent of rGO which could offer a high electronic conductivity, and the U-Co2P@rGO-14 could deliver the highest capacity among the other mass percentages as shown in Fig. S10 (ESI†). To elucidate the reason for the stable cycle properties found in the U-Co2P@rGO-14 electrode, we conducted SEM, TEM and HRTEM analyses to study the influence of potassiation and/or depotassiation on the morphology and microstructural stability of the U-Co2P@rGO-14 electrode. As shown in Fig. S11 (ESI†), the ultrafine nanostructure can effectively accommodate the strain to ensure integrity of the electrode during cycling. TEM analysis of the cycled U-Co2P@rGO-14 nanocomposite shows that its unique ultrafine structure is largely preserved after repetitive cycling, as shown in Fig. 4b and Fig. S12 (ESI†). The Co2P NRs, with a sub-4 nm diameter, remains attached onto the rGO, thereby attesting to the structural robustness of the ultrafine Co2P NRs (Fig. 4c). As shown in Fig. 4d, the HRTEM image of the depotassiated sample indicates that the single crystal structure of the ultrafine Co2P NRs could be maintained after charging to 3.0 V by contrast with its original crystal geometry. The corresponding EDS elemental mapping analysis confirms the coexistence and homogenous distribution of the Co, P, and C elements in the selected area (Fig. 4e). Moreover, the electrochemical impedance spectroscopy (EIS) results of U-Co2P@rGO-14 are shown in Fig. S13 (ESI†). The charge transfer resistance of U-Co2P@rGO-14 maintains almost the same value after the 10th cycle, which also suggests that the ultrafine nanostructure could be preserved, leading to a better cycling performance.49 In addition, the charge–discharge profiles for several selected cycles are displayed in Fig. S14 (ESI†), which shows no obvious difference from the 10th to the 5000th cycle, indicative of an excellent electrochemical reversibility.
To further highlight the advantages of the U-Co2P@rGO-14 electrode, a hybrid KIC comprised of a U-Co2P@rGO-14 anode and a commercial activated carbon (AC) cathode was assembled. From a mechanistic point of view, charges are simultaneously and asymmetrically stored in the KIC by surface anion adsorption–desorption on the capacitive cathode and via potassiation/depotassiation in the anode, respectively. The charge–discharge processes of these two electrodes were performed in different potential ranges, which can enlarge the operating potential window in an efficient manner and result in an enhanced energy density. Before constructing the KIC, the activated carbon, with a surface area of 1368 m2 g−1 (Fig. S15, ESI†), was tested as the cathode with metallic potassium as the counter electrodes, the charge–discharge profiles, cycle, and rate performances are displayed in Fig. S16 in the ESI.† The working potential window of each electrode was first determined using a CV test in a half-cell configuration as shown in Fig. 5a, and the working voltage window of the full cell was set between 1.0 and 4.0 V. In Fig. 5b, the charging/discharging curves exhibit an almost triangular shape with relatively linear voltage-time plots, revealing a good capacitive behavior, mainly due to the combination of the charge storage mechanisms between the faradaic and non-faradaic reactions. On the basis of the galvanostatic charge–discharge measurements, the energy and power densities of U-Co2P@rGO-14//AC can be calculated based on the total sample mass of both the cathode and anode side. A high energy density of 87 W h kg−1 can be achieved at a power density of 12 W kg−1. This still delivers an energy density of 10 W h kg−1 at a high-power output of 4264.7 W kg−1. For the sake of evaluating the novel KIC configuration in the context, a Ragone plot was constructed (Fig. 5c), which demonstrates that the U-Co2P@rGO-14//AC device provides a high energy density and power density comparable to state-of-the-art supercapacitors, Na-based, and K-based hybrid energy storage devices, such as CNT-aerogel//CNT-aerogel,50 Ti3C2/Fe(OH)3//Ti3C2/Fe(OH)3,51 AC//Na-TNT,52 and AC//graphite.53 In addition, as shown in Fig. 5d, the U-Co2P@rGO-14//AC capacitor can be maintained up to 1000 cycles with a capacity retention of 68% at a current density of 1 A g−1, suggesting once again that it is a suitable energy storage device for large-scale applications.
(1) |
Pmass = Emass/t | (2) |
Footnotes |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c9nh00211a |
‡ These authors contributed equally to this work. |
This journal is © The Royal Society of Chemistry 2019 |