An S-scheme α-Fe2O3/g-C3N4 heterojunction nanostructure with superior visible-light photocatalytic activity for the aza-Henry reaction†
Abstract
Semiconductor-based photoredox catalysis is emerging as a green and promising strategy for solar–chemical energy conversion in organic synthesis. Here we present an S-scheme α-Fe2O3/g-C3N4 (FOCN) photocatalyst with good stability and recoverability for the aza-Henry reaction. The prepared FOCN composite shows significantly enhanced photocatalytic activity compared with its single-phase counterparts. The improved photocatalytic performance of the novel photocatalyst originates from the unique S-scheme feature, which not only efficiently speeds up the transfer and separation of photogenic charge carriers, but also enhances the redox ability of the photocatalyst. New perception into the fabrication of S-scheme photocatalysts for organic synthesis may be furnished by this study.
- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers