Facile regeneration of oxidized porous carbon nitride rods by the de-aromatization of the heptazine network in bulk g-C3N4†
Abstract
The production of g-C3N4 nanostructures with remarkable charge separation efficiency using a one-step, green, and economic approach is of great challenge. Herein, one-dimensional oxidized porous carbon nitride rods are successfully fabricated via re-polymerization of de-aromatized melem-containing oligomers that resulted from the hydrothermal treatment of bulk carbon nitride in pure water and resemble the structures of supramolecular complexes networked with hydrogen bonds. The enlarged surface area and increased porosity have been evidenced by transmission electron microscopy and nitrogen sorption, while the enhanced optical properties and suppressed electron–hole recombination process have been confirmed by diffuse reflectance spectrophotometry and steady-state photoluminescence. Exemplification in photocatalytic rhodamine B degradation reveals significantly improved photoactivity, exhibiting 9.2 and 6.4 times higher kinetic rate constants than that of the bulk carbon nitride under white and blue light irradiation, respectively. The proposed nanocasting strategy via de-aromatization of the heptazine network in bulk g-C3N4 overcomes the long-standing serious agglomeration for g-C3N4 synthesis and improved photocatalytic activity due to the enhanced light capture capacity and promoted electron–hole separation process.
- This article is part of the themed collection: 2022 Inorganic Chemistry Frontiers HOT articles